OFFSET
0,3
COMMENTS
From Gus Wiseman, Jul 04 2019: (Start)
Also the number of subsets of {1..n} whose sum is less than or equal to the sum of their complement. For example, the a(0) = 1 through a(5) = 16 subsets are:
{} {} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{3} {3} {3}
{1,2} {4} {4}
{1,2} {5}
{1,3} {1,2}
{1,4} {1,3}
{2,3} {1,4}
{1,5}
{2,3}
{2,4}
{2,5}
{3,4}
{1,2,3}
{1,2,4}
(End)
FORMULA
a(0)=1; for 0<n, a(n) = A058377(n)+2^(n-1).
EXAMPLE
x = 3: for n = 2 there are 2 possibilities: 1*3*9=27 and 1/3*9=3. For n = 4 there are 9 possibilities: 1*3*9*27*81 1/3*9*27*81 1*3/9*27*81 1/3/9*27*81 1*3*9/27*81 1*3*9*27/81 1/3*9/27*81 1/3*9*27/81 1*3/9/27*81
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Plus@@Complement[Range[n], #]>=Plus@@#&]], {n, 0, 10}] (* Gus Wiseman, Jul 04 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Feb 16 2001
EXTENSIONS
More terms from Alois P. Heinz, Jun 13 2019
STATUS
approved