A059496 is finite with last term a(114) = 149. We have to show: 1) a(114) = 149 2) 149 has no new prime successor, that is we get only composites or already occurring primes, when prepending or replacing any digit by a nonzero digit. We omit (1), and for (2) we have only to inspect the following complete list of candidate successors of 149. {140 + d | d = 1 .. 9} 141 = 3 * 47 142 = 2 * 71 143 = 11 * 13 144 = 2^4 * 3^2 145 = 5 * 29 146 = 2 * 73 147 = 3 * 7^2 148 = 2^2 * 37 149 = a(114) {109 + 10*d | d = 1 .. 9} 119 = 7 * 17 129 = 3 * 43 139 = a(23) 149 = a(114) 159 = 3 * 53 169 = 13^2 179 = a(113) 189 = 3^3 * 7 199 = a(22) {49 + 100*d | d = 1 .. 9} 149 = a(114) 249 = 3 * 83 349 = a(85) 449 = a(93) 549 = 3^2 * 61 649 = 11 * 59 749 = 7 * 107 849 = 3 * 283 949 = 13 * 73 {149 + 1000*d | d = 1 .. 9} 1149 = 3 * 383 2149 = 7 * 307 3149 = 47 * 67 4149 = 3^2 * 461 5149 = 19 * 271 6149 = 11 * 13 * 43 7149 = 3 * 2383 8149 = 29 * 281 9149 = 7 * 1307 . ---------------------------------------- reinhard.zumkeller@gmail.com, Jan 6 2014