[go: up one dir, main page]

login
A059479
Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.
1
1, 4, 9, 64, 25, 36, 49, 256, 729, 100, 121, 576, 169, 196, 225, 4096, 289, 2916, 361, 1600, 441, 484, 529, 2304, 15625, 676, 6561, 3136, 841, 900, 961, 16384, 1089, 1156, 1225, 46656, 1369, 1444, 1521, 6400, 1681, 1764, 1849, 7744, 18225, 2116, 2209
OFFSET
1,2
COMMENTS
This sequence is multiplicative. - Mitch Harris, Apr 19 2005
The sequence enumerates the solutions of a system of polynomials equations modulo n, hence is multiplicative by the Chinese Remainder Theorem. The middle entry of the 3 X 3 is zero modulo n. - Michael Somos, Apr 30 2005
LINKS
FORMULA
a(n) = A008833(n)*n^2, where A008833(n) is the largest square that divides n.
Multiplicative with a(p^e) = p^(3e - (e % 2)). - Mitch Harris, Jun 09 2005
Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - Vaclav Kotesovec, Sep 16 2020
Sum_{n>=1} 1/a(n) = 15*zeta(6)/Pi^2 = A082020 * A013664 = 1.546176... . - Amiram Eldar, Nov 03 2022
MATHEMATICA
f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, n^3/core(n)) /* Michael Somos, Apr 30 2005 */
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
John W. Layman, Feb 15 2001
STATUS
approved