[go: up one dir, main page]

login
A059446
Triangle T(n,k) = coefficient of x^n*y^k/(n!*k!) in 1/(1-x-y-x*y), read by rows in order 00, 10, 01, 20, 11, 02, ...
1
1, 1, 1, 2, 3, 2, 6, 10, 10, 6, 24, 42, 52, 42, 24, 120, 216, 300, 300, 216, 120, 720, 1320, 1968, 2268, 1968, 1320, 720, 5040, 9360, 14640, 18576, 18576, 14640, 9360, 5040, 40320, 75600, 122400, 166320, 184896, 166320, 122400, 75600, 40320
OFFSET
0,4
FORMULA
E.g.f.: 1/(1-x-y-x*y).
T(n, k) = n!*2^k*Hypergeometric2F1([-k, -k], [-n], 1/2). - Detlef Meya, Aug 18 2024
EXAMPLE
Triangle begins:
1;
1,1;
2,3,2;
6,10,10,6;
...
MAPLE
read transforms; SERIES2(1/(1-x-y-x*y), x, y, 12): SERIES2TOLISTMULT(%, x, y, 12);
MATHEMATICA
T[n_, k_] := n!*2^k*Hypergeometric2F1[-k, -k, -n, 1/2]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten (* Detlef Meya, Aug 18 2024 *)
CROSSREFS
Cf. A008288.
Sequence in context: A025502 A110777 A087454 * A298854 A355266 A188881
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Feb 02 2001
STATUS
approved