OFFSET
0,4
FORMULA
T(n, k) = max(T(n-1, k-1), T(n-1, k)) + min(k, n-k+1). - Jon Perry, Aug 05 2004
E.g.f.: exp(x+y)(x+y+xy) (as a square array read by antidiagonals). - Paul Barry, Sep 24 2004
From Michael Somos, Jul 28 2015: (Start)
Row sums = Sum_{k=0..n} T(n-k, k) = A005581(n+1).
T(n, k) = T(k, n) = T(-2-n, -2-k) for all n, k in Z.
Sum_{n, k >= 0} x^T(n, k) = f(x) / x where f() is the g.f. for A000005. (End)
EXAMPLE
As an infinite triangular array:
0
1 1
2 3 2
3 5 5 3
4 7 8 7 4
5 9 11 11 9 5
As an infinite square array (matrix):
0 1 2 3 4 5
1 3 5 7 9 11
2 5 8 11 14 17
3 7 11 15 19 23
4 9 14 19 24 29
5 11 17 23 29 35
PROG
(PARI) {T(n, k) = n + k + n*k}; /* Michael Somos, Jul 28 2015 */
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Feb 13 2001
STATUS
approved