[go: up one dir, main page]

login
A058885
a(n) = smallest k such that k! ends in 2^n, not counting the trailing zeros.
1
0, 2, 4, 9, 12, 8, 20, 33, 159, 43, 49, 348, 60, 91, 8134, 1964, 1392, 735, 34060, 9030, 14052, 39306, 16906, 29338, 53711, 356449, 88137, 543041, 1435398, 1000154, 5037980, 2245246, 499245, 6240345, 2989574, 34190394, 11257817, 146038526
OFFSET
0,2
EXAMPLE
a(4) = 12 because 12! = 479001600. When you delete the trailing zeros, you have 4790016 which ends in 16 = 2^4.
MATHEMATICA
f[n_] := Block[{a = 2^n, k = 1, len = 10^Floor[ Log[10, 2^n] + 1], p = 1}, While[ Mod[p, len] != a, p = k*p; While[ Mod[p, 10] == 0, p /= 10]; p = Mod[p, 100*len]; k++ ]; k - 1]; lst = {}; Do[ AppendTo[ lst, f@n], {n, 0, 37}]
CROSSREFS
Cf. A059449.
Sequence in context: A372686 A372517 A096134 * A256446 A022428 A096186
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 07 2001
EXTENSIONS
a(15) corrected, a(18) through a(37) and better definition from Jon E. Schoenfield Sep 02 2009.
STATUS
approved