%I #17 Jul 10 2018 09:49:18
%S 1,0,1,1,0,0,1,1,1,1,2,1,3,2,2,3,3,4,5,3,4,6,6,6,8,7,8,10,10,10,14,13,
%T 14,17,16,18,22,22,25,26,28,29,37,35,38,44,44,48,55,54,60,67,71,74,83,
%U 85,92,103,107,112,127,128,140,154,157,168,188,192,206
%N McKay-Thompson series of class 105A for Monster.
%D D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H Vaclav Kotesovec, <a href="/A058773/b058773.txt">Table of n, a(n) for n = -1..3200</a> (computed by David A. Madore)
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&threadID=1602206&messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F a(n) ~ exp(4*Pi*sqrt(n/105)) / (sqrt(2) * 105^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 10 2018
%e T105A = 1/q + q + q^2 + q^5 + q^6 + q^7 + q^8 + 2*q^9 + q^10 + 3*q^11 + 2*q^12 + ...
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%K nonn
%O -1,11
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _Michel Marcus_, Feb 19 2014