[go: up one dir, main page]

login
A058632
Coefficients of replicable function number "32b".
1
1, 2, 3, 6, 7, 10, 16, 20, 29, 40, 52, 70, 91, 116, 149, 190, 242, 306, 383, 478, 590, 730, 897, 1096, 1342, 1630, 1975, 2390, 2873, 3448, 4133, 4932, 5880, 6994, 8290, 9814, 11587, 13650, 16058, 18848, 22089, 25842, 30178, 35186, 40950, 47594, 55231, 63996, 74068, 85592, 98776, 113864
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/4)*(eta(q^2)*eta(q^4)/(eta(q)*eta(q^8)))^2 in powers of q. -G. C. Greubel, Jun 23 2018
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
From Michael Somos, Jan 17 2023: (Start)
Expansion of (psi(x)/psi(-x^2))^2 = (phi(-x^4)/psi(-x))^2 = (chi(x)*chi(x^2))^2 = (chi(-x^4)/chi(-x))^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = f(t) where q = exp(2 Pi i t). (End)
EXAMPLE
T32b = 1/q + 2*q^3 + 3*q^7 + 6*q^11 + 7*q^15 + 10*q^19 + 16*q^23 + 20*q^27 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; a := CoefficientList[Series[q^(1/4)*(eta[q^2]*eta[q^4]/(eta[q]*eta[q^8]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, Jun 23 2018 *)
From Michael Somos, Jan 17 2023: (Start)
a[ n_] := SeriesCoefficient[ (EllipticTheta[2, 0, q^(1/2)]/EllipticTheta[2, Pi/4, q])^2 / (2/q^(1/4)), {q, 0, n}];
a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, -q^4]/EllipticTheta[2, Pi/4, q^(1/2)])^2 *(2*q^(1/4)), {q, 0, n}];
a[ n_] := SeriesCoefficient[ (QPochhammer[-q, q^2]*QPochhammer[-q^2, q^4])^2, {q, 0, n}];
a[ n_] := SeriesCoefficient[ (QPochhammer[+q^4, q^8]/QPochhammer[+q, q^2])^2, {q, 0, n}]; (End)
PROG
(PARI) q='q+O('q^50); Vec((eta(q^2)*eta(q^4)/(eta(q)*eta(q^8)))^2) \\ G. C. Greubel, Jun 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(6) onward added by G. C. Greubel, Jun 23 2018
STATUS
approved