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A Synopsis of the Basics as Covered in DCL-Chemy 

  

The idea of the dynamic coefficient list (DCL for short) is that coefficients may assume diverse values over 

the course of an iterative procedure. In the first article in this series (called ‘DCL-Chemy Transforms 

Fibonacci-type Sequences to Arrays’, or ‘DCL-Chemy’), the generalized Fibonacci-sequence formula 
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Where  and  are the lists  = [b1, b2… bi] and  = [c1, c2… cj]. 

 

A sequence φ (where  = the order of φ = LCM(i,j)) is generated by applying terms in  and  in order, 

according to the iteration being performed. I.e., at the 1st iteration, the initial F0 and F1 are multiplied by c1 

and b1 respectively; at the 2nd iteration, F1 and F2 are multiplied by c2 and b2; on the 3rd iteration c3 and b3 

apply, and so on. After  iterations, the cycle repeats. 

 

This process generates one sequence: to then start with  = [b2, b3… b, b1] and  = [c2, c3… c, c1] generates 

another. Permuting  and  cyclically generates  distinct sequences which, in the context of an array, are 

aligned vertically and designated as S1, S2… S. Arrays are typically represented by Φ [][], with ,  and 

 in numerical form. 

 

Define Fn+1/Fn, for n  ∞, as a limit ratio. As a rule, each sequence in an array converges, simultaneously 

and in two directions, to  positive and  negative limit ratios. Formulas derived in DCL-Chemy use 

elements of Φ to find coefficients for  different quadratic equations (Qj) that have roots corresponding to 

specific limit ratios. 

 

The symbol Qk was defined as the equation with Q’s roots taken to the kth power. In contexts where, as in 

Qk, the exponent is underlined, it is taken to mean the exponent operates over a polytonic base. E.g., in Φ 

[1,2,3][3,2,1], 
5

2
2 1 3 2 1 12c       . If  = [ ] = [1,2,3… ∞], then, e.g., 

1

n
b = n! and 

7

3
b   7!/2!. (For 

what it’s worth, the exponential and factorial functions are thus, to some extent, unified.) 

 

These and other formulas, operations and symbols will appear in what follows as tools for exploring the 

effects of reversing (inverting) the order of the terms in  and . 
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Enter the Labyrinth 

 

Whereas cyclical permutation of the terms in the DCLs (coefficient lists) [b1, b2… b] and [c1, c2… c] 

generates the sequences Sj in an array Φ, certain other permutations create arrays that are closely related 

in varied and surprising ways. The other permutations to be investigated here reverse the order of most or 

all of the terms in  and . In general, such reversals are referred to as inversions. 

 

More precise definitions will follow; for now, the simple  = [1] case is considered. Define the mapping  

→  as [b1, b2… b] → [b, b1… b1]. This turns Φ into Φ. For a numerical example,  = [1,2,3], gives 

 = [3,2,1]. These arrays Φ3 and Φ3 are, as seen below, closely related, but much more intimately than one 

might at first suspect.  

 
Φ3 [1,2,3][1] S1 S2 S3  Φ3 [3,2,1][1] S1 S2 S3 

 25 37 13   25 13 37 

 11 10 9   9 10 11 

F- 3 7 4   7 3 4 

 2 3 1   2 1 3 

 1 1 1   1 1 1 

F0 0 0 0   0 0 0 

 1 1 1   1 1 1 

 1 2 3   3 2 1 

F 3 7 4   7 3 4 

 10 9 11   10 11 9 

 13 25 37   37 25 13 

F2 36 84 48   84 36 48 

 121 109 133   121 133 109 

 157 302 447   447 302 157 

 

Table 1: The symmetries of  →  

 

A cursory comparison of Φ3 and Φ3 reveals several relationships and symmetries. E.g., it could be said that 

the  →  mapping straightens out the right-to-left descending diagonals of Φ3 to create the columns of Φ3. 

Then vice versa for  → . 

 

The left-to-right descending diagonals are the same in each array, and, in one of the three cases, in phase. 

 

Moreover, a series Sj in Φ3 taken from F0 through Fn<0 has the same terms (disregarding signs) as found in 

a column Si in Φ3 from F0 through Fn>0. Hence, signage aside,  →  is akin to either flipping Φ3 on both a 

horizontal and vertical axis or rotating it through 180º. 

 

We now restate, from among those formulas derived in DCL-Chemy, a generalized quadratic equation: 
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Let k = k = 1, and apply this formula to the two arrays above for these six equations: 

 
2

1 1 1
3 8 7Q x x        

2

1 1 1
7 8 3Q x x    

2

2 2 2
7 6 4Q x x        

2

2 2 2
3 10 4Q x x    

2

3 3 3
4 10 3Q x x        

2

3 3 3
4 6 7Q x x    

 

Table 2: Quadratics with coefficients derived from table 1 

 

A property of Q = ax2 + bx + c is that Q–1 = cx2 + bx + a; but for –c, then Q–1 = cx2 – bx – a. That is, for a 

always positive, if c in Q is negative, then the sign of b in Q–1 is reversed. Note that for every Qj in table 2 

there is a Qi with the same b while a and c are exchanged; yet, while the c coefficient of each equation is 

negative, the b coefficients in each Qj and Qi are all of negative sign. Hence, in these examples, for every 

root rj in Φ3 there is an ri in Φ3 such that rj · ri = –1; i.e., a root in Φ3 has a negative inverse in Φ3. 

 

Asymmetric Inversions 

 

For  > 1, it seems that certain relationships inherent to the roots and coefficients of  = 1 quadratics are 

now expressed in more expansive ways. Interactions that are typical of roots r+ and r– in a single equation 

will also be found among roots of equations taken from related arrays. To further elaborate, consider arrays 

with terms in  not all identical; i.e., for [c1, c2… cλ], some cj ≠ ci. In this polytonic  case, two types of 

inversions will be investigated: symmetrical and asymmetrical. The latter kind are considered first. 

  

Definition: To effect the desired alignment of  and , an asymmetric inversion (Φ  Φ) leaves the initial 

term of  fixed. I.e., this technique reverses the order of all terms in , but for , only the final  –1 terms 

of the arrangement are inverted in : i.e., 

 

   = [b1, b2… b]  [b , b1… b1]            = [c1, c2… c]  [c1, c , c1… c2] 

 

Arrays formed on [1], [1,2,3] and [1], [1,3,2] are seen below. 

 
Φ3 [1][1,2,3] S1 S2 S3  Φ3 [1][1,3,2] S1 S2 S3 

 4/18 
6/6 

5/12   5/12 
6/6 

4/18 

F 
3/6 

4/6 
2/6   4/6 

3/6 
2/6 

 1/6 
1/3 

1/2   1/6 
1/2 

1/3 

 1/3 
1/1 

1/2   1/2 
1/1 

1/3 

F0 0 0 0   0 0 0 

 1 1 1   1 1 1 

 1 1 1   1 1 1 

F 3 4 2   4 3 2 

 6 5 4   6 4 5 

 9 13 10   10 13 9 

F2 21 28 14   28 21 14 

 48 41 34   48 34 41 

 

Table 3: The effect of    for [1,2,3] 

 

The formula in (1.1) now applies to arrays in table 3 
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2

1 1 1
3 5 4Q x x        

2

1 1 1
4 5 3Q x x    

2

2 2 2
4 3 4Q x x        

2

2 2 2
3 6Q x x    

2

3 3 3
2 9Q x x        

2

3 3 3
2 3 8Q x x    

 
Table 4: Quadratics with coefficients derived from table 3 

 

In the patterns that appear below, the reason for the [c1, c , c1… c2] offset becomes apparent. 

 
Φ3 [1,2,3][1,2,3] S1 S2 S3  Φ3 [3,2,1][1,3,2] S1 S2 S3 

 7/9 
5/2 

11/12   11/12 
5/2 

7/9 

F 
2/3 

3/2 
2/3   3/2 

2/3 
2/3 

 1/3 
1/1 

1/2   1/3 
1/2 

1/1 

 1/3 
1/1 

1/2   1/2 
1/1 

1/3 

F0 0 0 0   0 0 0 

 1 1 1   1 1 1 

 1 2 3   3 2 1 

F 4 9 4   9 4 4 

 15 11 14   15 14 11 

 19 40 54   54 40 19 

F2 68 153 68   153 68 68 

 261 193 224   261 224 193 

 

Table 5: The offset in  preserves the Φ3/ Φ3 relationships found in tables 1 and 3 

 
2

1 1 1
4 13 9Q x x        

2

1 1 1
9 13 4Q x x    

2

2 2 2
9 5 8Q x x        

2

2 2 2
4 11 12Q x x    

2

3 3 3
4 11 12Q x x        

2

3 3 3
4 5 18Q x x    

 

Table 6: Quadratics with coefficients derived from table 5 

 

Below, roots from tables 2, 4 and 6 are paired off in the top tiers so that their products are integers, equal 

(in absolute value) to a term in . In the lower tiers, the roots are summed to equal a term in , 

 
Roots from        table 2           table 4                         table 6 
 

  1 1 1r r       1 1 1r r       1 1 1r r     

Products: 2 3 1r r       2 3 2r r       2 3 2r r     

  3 2 1r r       3 2 3r r       3 2 3r r     

 

  1 2 3r r      1 2 1r r      1 2 3r r    

Sums:  2 1 1r r      2 1 1r r      2 1 1r r    

  3 3 2r r      3 3 1r r      3 3 2r r    

 

Table 7: Roots of quadratics combined as products and sums equal terms in  and  respectively 

 

The signs of roots in each pairing can be reversed for the same result. Note that in table 6, Q3 and Q2 are 

the same equation. Their roots multiply to return  and  terms, and also, multiplied by a, the c coefficient. 
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Given the proper matchings, rj+  ri– products are in  and , and rj+ + ri– sums are in  and .  Without the 

adjustment in the  inversion, the root pairings in table 7 would not produce these same products and sums, 

and the relationships between the roots that are considered next would not exist. 

 

To get somewhat formal about it: taking it as given that, for  > 1, the patterns in tables 1 through 6 will 

hold for all Φ and their Φ inversions, we prove, for the [1] case, a theorem about the roots found in table 

2. In the following provisional proof, a strikethrough in any symbol identifies it with Φ. 

 

Theorem 1: (Given [1].) For each Qj there is a Qi such that 
j i j i j ir r r r c c          . 

 

Proof: For this demonstration, Qj and Qi are chosen to have the same b coefficient; i.e., b = b. Then, using 

a simplified version of (1.1) and availing of the a = c, c = a symmetry, the two equations are expressed as 

 

 
2

, 1, 1, 1 , 1
( )

j j j j j j j
Q F x F F c x F c

      
         (1.2) 

2

, 1 1, 1, 1 ,
( )

i j j j j j j
Q F x F F c x F c

      
        

 

Both equations, Qj and Qi above, based on the aj = |ci| and |cj| = ai exchange, apply to Φ. The roots are 

expressed below in quadratic formula form. (It will be shown in theorem 2 that all equations in Φ share a 

common discriminant (D); here D = b2  4ac. Moreover, as a consequence of the Φ/Φ symmetries, this 

D is common to Qi as well.)  

 
2 2

, , 1

, , 1 , , 1

4( )

2 2 4

j j j

j i j

j j j j

b b F F cb D b D
r r c

F F F F

 

   



 

 

       
     


 

QED 

 

If the equations in (1.2) had instead been designed to apply to Φ, the proof would have returned ci. As a 

corollary, 

  rr  and 


  rr . That is, the product of all the positive (negative) roots in Φ is equal to 

the product of all the positive (negative) roots in Φ. This is because D = D and each aj = some ai. Thus the 

roots rj and ri are the same combinations of –b  D1/2 over the same 2a in a different order, so the products 

are identical. Note then: 

 

  rrxrrxQQ )(2

 and 
 )1(  jcrrrrrrrr  

 

An example of theorem 1 uses the equations Q1 = 3x2 – 8x – 7 and Q1 = 7x2 – 8x – 3 in table 2: 

 

1 1 1

8 64 4 3 7 8 64 4 7 3 64 (64 84)
1

2 3 2 7 84
r r c
 

         
       

 
 

 

Matching ‘b’ coefficients works for table 4 roots as well. E.g., take Q3 = 2x2 – x – 9 and Q2 = 3x2 – x – 6: 

 

3 2 3

1 1 4 2 ( 9) 1 1 4 3 ( 6) 1 (1 72)
3

2 2 2 3 24
r r c
 

           
       

 
 

 

The technique also extends to table 6 roots. For instance, take Q2 = 9x2 – 5x – 8 and Q3 = 4x2 – 5x – 18: 



 5 

2 3 2

5 25 4 9 ( 8) 5 25 4 4 ( 18) 25 (25 288)
2

2 9 2 4 144
r r c
 

           
       

 
 

 

As for the corollary: from table 1, 1 2 3 1 2 312.08276r r r r r r r r 

                

 

Then for 
 )1(  jcrr : from table 2 we have 7.772, .772 and 6r r r r   

          

 

As evidenced in table 7, another complementary relationship between the roots of Φ and Φ is that for each 

Qj there is a Qi such that j i j i j ir r r r b b        . To effect this result, Qj and Qi are chosen to share 

the a coefficient. Here, even the simple [1] case is left for the reader to prove… 

 

Some Curious Properties of Qj Convergents 

 

A remarkable relationship between Φ and Φ emerges when one seeks convergents for rj. Convergents are, 

in this application of the concept, a series of ordinary fractions that approach ever more closely to the roots 

of Qj. For  = 1, the convergents of rj± are simply terms of the sequence from which the coefficients for Q 

were taken. E.g., let Q = x2 – x – 1: then the convergents have successive terms of the  sequence as 

numerators and denominators:  

 

…5/8, 
3/5, 2/3, 

1/2, 1/1, 0/1, 1/0, 1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13… 

 

These fractions converge to 1/ on the left and  on the right; i.e., the zeros of x2 – x – 1. 

 

Another symbol will be helpful here. With the numerator sequence as a reference, let the displacement of 

the denominator sequence be represented by . Let 0 represent a series of fractions with numerators equal 

to denominators. Then 1 signifies a shifting of the denominators one place to the right, as in the series of 

fractions above. k is a rightward shift of k places and, in general, convergence to the roots of Qk. For 

example, 3 gives the sequence 

 

…5/21, 
3/13, 2/8, 

1/5, 1/3, 0/2, 1/1, 1/1, 2/0, 3/1, 5/1, 8/2, 13/3, 21/5… 

 

These fractions are converging to 1/3 on the left and 3 on the right. 

 

Now, what happens for  > 1? Take for an example Φ3 [1,2,3][1], S1 /S1, 1; 

 

…25/36, 
11/25, 3/11, 

2/3, 1/2, 0/1, 1/0, 1/1, 3/1, 10/3, 13/10, 36/13, 121/36… 

 

We’ve seen that the ratio of adjacent terms of this series converges to six values simultaneously, i.e., the 

roots of Q1, Q2 and Q3. But what if the objective is a series of consecutive fractions that will converge to 

the roots of only a single equation in this set? Here a shift 2 doesn’t help, for the fractions now converge 

to the 2nd power of the same six roots. A shift of 3, however, fulfills the condition, for then k = , and 

the equation 

jQ  has the same roots for all j; 

 

…25/302, 
11/133, 3/36, 

2/25, 1/11, 0/3, 1/2, 1/1, 3/0, 10/1, 13/1, 36/3, 121/10… 

 

This is a start: these fractions are indeed converging to the roots of one equation. Since a linear shift seems 

to work only for  let’s try another, sideways, course of action… such as, say, S1/S2, 1; 
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…25/84, 
11/37, 3/10, 

2/7, 1/3, 0/1, 1/0, 1/1, 3/2, 10/7, 13/9, 36/25, 121/84… 

 

This works―the terms converge to two numbers; r– = –.29753… and r+ = 1.44039… Or, more precisely, 

r1– and r1+, because the surprise here is that fractions composed of terms of sequences in Φ3 converge to the 

roots of equations in Φ3 (in this case, to Q1). This works both ways and in general, sequences in Φ form 

fractions that converge to roots in Φ and vice versa. To confirm this Φ3 [1,2,3][1] example, we set the 16th 

term of S1 (F16,1 = 213442) over the 15th term of S2 (F15,2 = 148183) to find the quotient 1.44039… ≈ r1+, a 

root of Q1 = 7x2  8x  3 in Φ3 [3,2,1][1]. 

 

A cursory appraisal reveals a general pattern, where S1/S2 in Φ converges to the roots of Q1. Moving to the 

left, S/S1 gives convergence to the roots of Q2, S–1/S to Q3, and etc. Moving the numerator sequence 

leftward while holding a constant denominator (i.e., Sj/Sj+1, Sj–1/Sj+1…) while simultaneously incrementing 

k causes a corresponding increase in the power k of 
k

jQ . 

 

Beyond these patterns there are, for ever-larger , no limits to making arbitrary Sj/Si pairings and k shifts, 

It seems that many of these combinations produce convergence to numbers that combine to form integral 

coefficients for some Qj, but such other patterns as may exist here aren’t so easy to discern. 

 

However, some of the statements above must at present be qualified, because attempts to derive Φ3 roots 

by creating convergents from Φ3 [1][1,2,3] sequences have not been successful thus far. 

 

In any case, returning to the Φ3 [1,2,3][1] example; to pursue this a bit further leads to the discovery that 

Φ and Φ are not really distinct. We take the array that appears in table 1, retain the vertical alignment and 

apply the shift Sj-1/Sj, Δ1 repeatedly to create the configuration below. 

 
25       

11 37      

3 10 13     

2 7 9 25    

1 3 4 11 37   

0 1 1 3 10 13  

1 0 1 2 7 9 25 

1 1 0 1 3 4 11 

3 2 1 0 1 1 3 

10 7 3 1 0 1 2 

13 9 4 1 1 0 1 

36 25 11 3 2 1 0 

121 84 37 10 7 3 1 

157 109 48 13 9 4 1 

 302 133 36 25 11 3 

  447 121 84 37 10 

   157 109 48 13 

    302 133 36 

     447 121 

      157 

 

Table 8: The array Φ3Δ1 [1,2,3][1], where the nth column is shifted down by n – 1 rows 

 

Call an array that is thus ordered, say, ΦΔ. Now perform these shifts on Φ3 [3,2,1][1] to create Φ3Δ. Then 

define the symbol ♦ as an operation on an array; specifically, a 90º CCW rotation followed by a vertical 

axis flip. Then ♦ΦΔ = ΦΔ, and so of course ♦ΦΔ = ΦΔ. The illusion of Φ/Φ duality is thus dispelled… 
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Qj Derived from Φ by (1.1) Share a Common Discriminant 

 

Consider the square below, which represents four adjacent terms of ΦΔ: 

 

d f 

g h 

 

The arrays in table 8 may be used to verify that the relationship dh – gf = ±1 holds throughout. This is a ΦΔ 

variant of the more general formula expressed below in (1.3). This formula applies to Φ and is useful for 

proving a basic theorem, with a method that showcases a novel algebraic technique. 

 

Theorem 2: The equations in Φ share a common discriminant of the form 

 
2

1, 1, 1
( ) 4 ( 1)

j j j j
D F F c c

 

   
       

 

Proof: The proof depends on the equation 

 

 
1

, , 1 1, 1, 1 1
( 1)

n n

n j n j n j n j j
F F F F c



    
       (1.3) 

(This is a 2D version of the Fibonacci identity, 
2

1 1
( 1)

n

n n n
F F F

 
    ) 

 

(1.2) , the alternate version of (1.1) used in theorem 1, is generalized to be useful in this situation as well. 

 

 
2

, , , ,
( ( 1) ) ( 1)

k k k k k

j j k j k j k j j k j
Q F x F F c x F c

      
             (1.4) 

Then the discriminant of Qj can be stated as 
2

1, 1, 1 , , 1
( ) 4 ( )

j j j j j j
D F F c F F c

      
        

 

Clearing the parentheses; 
2 2 2

1, 1, 1 1, 1, 1 , , 1
2 4

j j j j j j j j j
D F F c c F F c F F

           
          

 

But, from (1.3): 
, , 1 1, 1, 1

4 4 4 ( 1)
j j j j j j j

c F F c F F c
 

      
         

 

Substituting and collecting terms; 
2 2 2

1, 1, 1 1, 1, 1
2 4 ( 1)

j j j j j j j
D F F c c F F c

 

        
          

 

Factoring; 
2

1, 1, 1
( ) 4 ( 1)

j j j j
D F F c c

 

   
       

                                                                 QED 

 

An assertion here is that 
1

1j j j
c c c

 


   is a valid algebraic operation, even if it isn’t in the textbooks yet. If 

another proof of the theorem can be found, we can work backwards to prove  (1.3). 

 

Note that theorem 2 also shows that F+1,j + F–1,j+1  cj has the same value for any/all choices of j in an array. 

 

Symmetrical Inversions 

 

Returning to the subject of coefficient list inversions, we’ll now look at the symmetrical type. In this case, 

the symbol for the inverted array will be underlined. 
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Definition: A symmetric inversion Φ  Φ is symmetrical with respect to the order of terms in  and . 
That is, it directly inverts (reverses) the sequential order of the terms in each list: 

 

   = [b1, b2… b]  [b , b1… b1]     = [c1, c2… c]  [c , c1… c1] 

 

For example: 
 

Φ3 [1,2,3][1,2,3] S1 S2 S3  Φ3 [3,2,1][3,2,1] S1 S2 S3 

F4 
14/18 

15/6 
11/12   14/6 

11/18 
15/12 

F 
4/6 

9/6 
4/6   8/6 

3/6 
6/6 

F2 
2/6 

3/3 
1/2   2/2 

1/3 
3/6 

F1 
1/3 

1/1 
1/2   1/1 

1/3 
1/2 

F0 0 0 0   0 0 0 

F1 1 1 1   1 1 1 

F2 1 2 3   3 2 1 

F 4 9 4   8 3 6 

F4 15 11 14   11 15 14 

F5 19 40 54   57 36 20 

F2 68 153 68   136 51 102 

 
Table 9: Symmetric inversion of Φ3 [1,2,3][1,2,3] 

 

The formula in (1.1) gives the equations: 

 
2

1 1 1
4 13 9Q x x       

2

1 1 1
8 5 9Q x x     

2

2 2 2
9 5 8Q x x       

2

2 2 2
3 13 12Q x x     

2

3 3 3
4 11 12Q x x       

2

3 3 3
6 11 8Q x x    

 

Table 10: Quadratic coefficients as extracted by (1.1) from symmetrically inverted arrays 

 

In this special case where  =   (i.e., b1 = c1, b2 = c2… bλ = cλ) all of the equations in the two sets share a 

common discriminant. There are many     cases where this relationship holds, such as say [1,5,9], 

[2,4,6]. Exactly what conditions on  and   are required to ensure that D = D is an interesting question, 

apparently related to properties of hyperbolic curves such as the one that appears later in (1.5). A similar 

question is, when do row sums and products in Φ equal, row for row, the row sums and products in Φ. 

 

When D = D, the DCL-Chemy formula 
2

1, 1, 1
( ) ( 1)

j j j j j j j
Q x F c F x c

  

   
        says that Q Q

  . 

Then the theorem below shows that solving this, or any single equation in the sets above, gives the roots of 

all of the others. 

 

Theorem 3: 
1, 1

,

( );
j j

j

j

r c F
i r

F







  



 
  and 

, 1, 1
( );

j j j j
ii r F r c F



    
     

 

Proof: First the root rj on the right side of (ii) is expressed in quadratic formula form, and the term 2F , j 

is cleared from the denominator; 

 
1/2

, , 1, , 1, 1 , , 1, 1
2 2

j j j j j j j j j j
F r F F F c F F D F c F



            
            
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F , j is divided out; 
1/2

1, 1, 1 1, 1
2 2

j j j j j
r F c F D c F


       
       

 

Collecting terms leaves a quadratic formula version of 
1/2

1, 1, 1
: 2

j j j
r r F c F D
 

     
     

QED 

 

For an example, 1r


  = 3.8365  1.26066  3.5865 = 17.3459 is the product of the positive roots of the Qj in 

table 10. Using (ii) in theorem 3, take r1+ and Fj,k terms from table 9 for 4  3.8365 + 2 = 17.3459.  

 

Recalling that D = D, this theorem applies there as well. 

 

Roots of Qj and Qi as Points on a Hyperbolic Curve 

 

Regarding Φ  Φ, the special  =   case closely relates to a certain well-known curve. To look first at 

an elementary example is instructive: take Q = x2 – x – 1. Two formulas that equate the roots of this 

equation to its coefficients can be combined to create a third formula: 

 

) ) Since in , then: ) 0i r r b ii r r c b c Q iii r r r r
       

           

 

A more general rendering of iii is 

 

 0xy x y     (1.5) 

 

Thus when b = c, the roots of Q in  = 1will combine to identify a point on (1.5). Evidently, when  = , 

this holds true for all . The (by now expected) twist is that a point on (1.5) takes a root from each Φ3 and 

Φ3. For an example, let x = r1+ = 3.8365…; this is a root of Q1 = 4x2  13x  9 in Φ3 [1,2,3][1,2,3]. Then let 

y = r1 = .7932…, a root from 
1

Q = 8x2  5x  9 in Φ3 [3,2,1][3,2,1]. Combine the two in (1.5) for 

3.8365(.7932) + 3.8365 .7932 = 0. These roots combine as the red points in the graph below. 

 

 
 

 

Figure 1: Quadratic roots combine as points on a hyperbola 
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The graph of ((1.5)) consists of curves that are mirror images, symmetrical with respect to the diagonals 

that pass through the point at (–1,–1). Call the section passing through the origin l1 and the other l2. Note 

that certain points are marked on l1: the black points are the roots of Q; the colored dots each take a root 

from a table 10 Qj, and a root from a corresponding Qi in Φ3. These table 10 equations are restated below. 

 
2

1 1 1
4 13 9Q x x       

2

1 1 1
8 5 9Q x x    

2

2 2 2
9 5 8Q x x       

2

2 2 2
3 13 12Q x x    

2

3 3 3
4 11 12Q x x       

2

3 3 3
6 11 8Q x x    

 

Table 11: Equations in table 10 are color-coded to correlate with points on the graph in figure 1 

 

The symmetries we’ve identified make it very simple to map a point from l1 to l2. Since x = y at both [0,0] 

and [–2,–2], then we need only add 2 to each root and reverse its sign. Thus to map the black dots to l2, take 

(1.618 + 2)(–1) = –3.618 and (–.618 + 2)(–1) = –1.382. Now (x + 3.618)(x + 1.382) gives the coefficients 

of a new equation, Q' = x2 + 5x + 5. The same procedure will map the colored dots to l2 (not shown in the 

graphic), and (after multiplying by the original a coefficient) gives the equations below. 

 
2

1 1 1
4 29 33Q x x        

2

1 1 1
8 37 33Q x x     

2

2 2 2
9 41 38Q x x        

2

2 2 2
3 25 26Q x x     

2

3 3 3
4 27 26Q x x        

2

3 3 3
6 35 38Q x x     

 

Table 12: Equations derived by mapping l1 points to l2 

 
We now have six more equations with integer coefficients, and it’s natural to wonder at this point if there 

are analogs to Φ3 and Φ3, that is, arrays from whence these new coefficients too may be taken. Although at 

first glance it seems plausible, a closer look shows that it likely is not. For example, the formula (1.1) 

ensures that the a coefficient of Qj+1 always divides c of Qj, a relationship that is seldom fulfilled in table 

12. The discriminant and certain other qualities are unchanged by the l1 → l2 mapping though; this property 

is explained in the third article in this series, DCL-Chemy III: Hyper-Quadratics. 

 

Given arbitrary  and , an interesting pursuit could be to find a general method for determining when D = 

D. If and when that is accomplished, there is the matter of finding a curve as in (1.5) that combines roots 

of the two Q-sets, or to determine if/when such a form exists. In many cases such as, say, [1,3,4], [4,3,1] 

then D ≠ D. But in general, if  and  are chosen as arithmetical sequences in , then apparently D = D. 

 

Take, for a numerical example, Φ3 [2,4,6][1,2,3]; here D = D and the roots of Φ3 and Φ3 combine to form 

points on the graph of 2xy + x + y = 0. Symmetric inversion of, say, Φ3 [1,2,3][3,2,1] and Φ3 [2,4,6][7,6,5] 

gives D = D, but try finding a curve on which these roots reside. To restate a problem outlined above: Given 

Φ and Φ with D = D, is there always a version of (1.5), or a curve of any kind, that contains the points rj+, 

ri- and rj-, ri+ on its line(s)? If so, given such a pair, how is the specific curve identified? 

  

http://ixitol.com/HyperQs.pdf
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ADDENDA 

 

Define the symmetric group of order n (Sn) as the set of the n! possible permutations (p) on n objects. Now 

map  → S, so as to generate ( – 1)! different arrays (( – 1)! because each p gets cycled  times). What 

patterns/relationships will emerge when all of these arrays are then considered as a set? 

 

An infinite, aperiodic array is Φ∞ [ ][1], where = the ring of integers. This array is generated for Fn≥0 

by a now familiar process, using as usual the initial terms F0 = 0, F1 = 1. For the column S1 let β = [1,2,3…∞], 

for S2, β = [2,3,4…∞] and etc. Then, for generation of columns leftwards of S1: S0 = β[0,1,2,3…∞]; S-1 = 

β[–1,0,1,2,3…∞] and so forth. The result is 

 
 S-3 S-2 S-1 S0 S1 S2 S3 S4 S5 

F0 0 0 0 0 0 0 0 0 0 

 1 1 1 1 1 1 1 1 1 

 –3 –2 –1 0 1 2 3 4 5 

 7 3 1 1 3 7 13 21 31 

 –10 –2 0 2 10 30 68 130 222 

F5 7 1 1 7 43 157 421 931 1807 

 –3 0 3 30 225 972 3015 7578 16485 

 1 1 13 157 1393 6961 24541 69133 166657 

 0 4 68 972 9976 56660 223884 698908 1849712 

 1 21 421 6961 81201 516901 2263381 7757121 22363201 

  

Table 13: Φ∞ [ ][1] 

 

This array is now reconfigured, using the numeral 1 as a pivot point. 

 
1     7 –2 1 0 1 0 1 –2 7    

2   13 –3 1 0 1 1 1 0 1 –3 13   

3  21 –4 1 0 1 2 3 2 1 0 1 –4 21  

4 31 –5 1 0 1 3 7 10 7 3 1 0 1 –5 31 

5 –6 1 0 1 4 13 30 43 30 13 4 1 0 1 –6 

6 1 0 1 5 21 68 157 225 157 68 21 5 1 0 1 

7 0 1 6 31 130 421 972 1393 972 421 130 31 6 1 0 

8 1 7 43 222 931 3015 6961 9976 6961 3015 931 222 43 7 1 

 7 6 5 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 

 

Table 14: Shifting the columns reveals the symmetry hidden in table 13 

 

One result, distinguished by bold numbers, is a symmetrical triangle. Note that the columns in the triangle 

are, aside from the offset, the same as those in the table 13 array. Let a number in this field be identified 

(according to the numbers at the margin) as Nj,k, where j designates a row and k a column. Then we have 

Nj-2,k + (j-1)Nj-1,k = Nj,k = Nj,k+2 + (k+1)Nj,k+1. So, a slightly variant form of the formula that produced Φ∞ in 

table 13 now applies in the horizontal direction as well. This is reminiscent of table 8, which was created 

by a similar kind of shifting process, 

 

And, indeed, a multiplicative relationship seen earlier in reference to table 8 also applies here: 

 

d f 

g h 

 

Then dh = fg ± 1 is true in this case as well. In closing, we extend the array in figure 14 from 8 to –8 in the 

vertical direction and highlight the zeros in bold. 
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-8 1 7 43 222 931 3015 6961 9976 6961 3015 931 222 43 7 1 

-7 0 1 6 31 130 421 972 1393 972 421 130 31 6 1 0 
-6 1 0 1 5 21 68 157 225 157 68 21 5 1 0 1 

-5 -6 1 0 1 4 13 30 43 30 13 4 1 0 1 -6 

-4 31 -5 1 0 1 3 7 10 7 3 1 0 1 -5 31 

-3 -130 21 -4 1 0 1 2 3 2 1 0 1 -4 21 -130 
-2 421 -68 13 -3 1 0 1 1 1 0 1 -3 13 -68 421 

-1 -972 157 -30 7 -2 1 0 1 0 1 -2 7 -30 157 -972 

0 1393 -225 43 -10 3 -1 1 0 1 -1 3 -10 43 -225 1393 

1 -972 157  -30 7 -2 1 0 1 0 1 -2 7 -30 157 -972 
2 421 -68 13 -3 1 0 1 1 1 0 1 -3 13 -68 421 

3 -130 21 -4 1 0 1 2 3 2 1 0 1 -4 21 -130 

4 31 -5 1 0 1 3 7 10 7 3 1 0 1 -5 31 

5 -6 1 0 1 4 13 30 43 30 13 4 1 0 1 -6 
6 1 0 1 5 21 68 157 225 157 68 21 5 1 0 1 

7 0 1 6 31 130 421 972 1393 972 421 130 31 6 1 0 

8 1 7 43 222 931 3015 6961 9976 6961 3015 931 222 43 7 1 

 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

 

Table 15: Extending the range of table 14 

 

An obvious name for this configuration is an X-array. What sort of relationships or patterns can be teased 

out here? For another example, take β = […–1,–1,–1,0,1,1,1…]. This gives the array below: 

 
1 1 2 3 5 8 13 21 13 8 5 3 2 1 1 

0 1 1 2 3 5 8 13 8 5 3 2 1 1 0 
1 0 1 1 2 3 5 8 5 3 2 1 1 0 1 

-1 1 0 1 1 2 3 5 3 2 1 1 0 1 -1 

2 -1 1 0 1 1 2 3 2 1 1 0 1 -1 2 

-3 2 -1 1 0 1 1 2 1 1 0 1 -1 2 -3 
5 -3 2 -1 1 0 1 1 1 0 1 -1 2 -3 5 

-8 5 -3 2 -1 1 0 1 0 1 -1 2 -3 5 -8 

13 -8 5 -3 2 -1 1 0 1 -1 2 -3 5 -8 13 

-8 5 -3 2 -1 1 0 1 0 1 -1 2 -3 5 -8 
5 -3 2 -1 1 0 1 1 1 0 1 -1 2 -3 5 

-3 2 -1 1 0 1 1 2 1 1 0 1 -1 2 -3 

2 -1 1 0 1 1 2 3 2 1 1 0 1 -1 2 

-1 1 0 1 1 2 3 5 3 2 1 1 0 1 -1 
1 0 1 1 2 3 5 8 5 3 2 1 1 0 1 

0 1 1 2 3 5 8 13 8 5 3 2 1 1 0 
1 1 2 3 5 8 13 21 13 8 5 3 2 1 1 

 

Table 16: Table 15 with a binary β 

 

This is an interesting outcome. In a typical horizontal representation, the Fibonacci sequence has a center 

at zero and a left and right side. In Table 16, the sequence is ‘bent’ 90° at each zero, and the former ‘sides’ 

are now orthogonal to one another. The multiplication (–1)β rotates it 180°; what does it do to the array? 


