[go: up one dir, main page]

login
A057966
Triangle T(n,k) of number of minimal 5-covers of a labeled n-set that cover k points of that set uniquely (k=5,..,n).
4
1, 156, 15, 14196, 2730, 140, 984256, 283920, 29120, 1050, 57578976, 22145760, 3407040, 245700, 6951, 2994106752, 1439474400, 295276800, 31941000, 1807260, 42525, 142719088512, 82337935680, 21112291200, 3045042000, 258438180
OFFSET
5,2
COMMENTS
Row sums give A046166.
LINKS
Eric Weisstein's World of Mathematics, Minimal cover
FORMULA
Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.
EXAMPLE
[1], [156, 15], [14196, 2730, 140], [984256, 283920, 29120, 1050], ...; there are 15 minimal 5-covers of a labeled 6-set that cover 6 points of that set uniquely.
CROSSREFS
Cf. A035347, A057669, A057963-A057965, A057967, A057968(unlabeled case).
Sequence in context: A278432 A299829 A115466 * A247435 A299170 A112818
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Oct 17 2000
STATUS
approved