[go: up one dir, main page]

login
A057962
Number of points (x,y) in square lattice with (x-1/2)^2+(y-1/2)^2 <= n.
4
4, 12, 16, 24, 32, 44, 52, 60, 68, 76, 80, 88, 96, 112, 120, 124, 140, 148, 156, 164, 172, 180, 188, 192, 208, 216, 232, 240, 248, 256, 268, 276, 284, 300, 308, 316, 332, 348, 360, 368, 376, 384, 392, 400, 408, 424, 432, 440, 448, 460, 468, 484, 492, 500
OFFSET
1,1
COMMENTS
Always a multiple of 4. Useful for rasterizing circles.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
EXAMPLE
a(2)=12 because (-1,0); (-1,1); (0,-1); (0,0); (0,1); (0,2); (1,-1); (1,0); (1,1); (1,2); (2,0); (2,1) are covered by any disc of radius between sqrt(2.5) and sqrt(4.5) and centered at (0.5,0.5).
CROSSREFS
Cf. A057961, A004018, A004020. Partial sums of A005883.
Sequence in context: A053006 A328849 A261958 * A186303 A073687 A187084
KEYWORD
easy,nonn
AUTHOR
Ken Takusagawa, Oct 15 2000
STATUS
approved