[go: up one dir, main page]

login
A057677
a(n) is the numerator of b(n) where b(n)=1/b(n-1)+1/b(n-2) with b(1)=1 and b(2)=2.
4
1, 2, 3, 7, 32, 339, 14287, 6877760, 143806067571, 1372321205281802503, 277081140489649960447116859520, 544875880027767543589801386360499677678401262339
OFFSET
1,2
FORMULA
a(n) satisfies the cubic recurrence : a(1)=1, a(2)=2, a(3)=3, a(4)=7, a(5)=32 and for n>=6 a(n)=a(n-2)^2*a(n-3)+a(n-1)*a(n-3)*a(n-4).
Limit_{n->oo} b(n)=sqrt(2) with geometric convergence since abs(b(n)-sqrt(2))<2*2^(-n/2).
CROSSREFS
Cf. A066932 (denominators).
Sequence in context: A066279 A337221 A161471 * A032148 A101484 A004026
KEYWORD
nonn,frac
AUTHOR
Zak Seidov, Oct 24 2002
EXTENSIONS
Edited by Benoit Cloitre, Oct 25 2005
STATUS
approved