[go: up one dir, main page]

login
A057559
Lexicographic ordering of NxNxNxN, where N={1,2,3,...}.
5
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 1
OFFSET
1,8
EXAMPLE
Flatten the list of ordered lattice points, (1,1,1,1) < (1,1,1,2) < (1,1,2,1) < ... as 1,1,1,1, 1,1,1,2, 1,1,2,1, ...
MATHEMATICA
lexicographicLattice[{dim_, maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1]; Flatten@lexicographicLattice[{4, 4}]
(* by Peter J. C. Moses, Feb 10 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 07 2000
EXTENSIONS
Extended by Clark Kimberling, Feb 10 2011
STATUS
approved