[go: up one dir, main page]

login
A056586
Ninth power of Fibonacci numbers A000045.
2
0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
OFFSET
0,4
COMMENTS
Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
Index entries for linear recurrences with constant coefficients, signature (55,1870,-19635,-85085,136136,85085,-19635,-1870,55,1).
FORMULA
a(n) = F(n)^9, F(n)=A000045(n).
G.f.: x*p(9, x)/q(9, x) with p(9, x) := sum_{m=0..8} A056588(8, m)*x^m = 1 - 54*x - 1413*x^2 + 9288*x^3 + 17840*x^4 - 9288*x^5 - 1413*x^6 + 54*x^7 + x^8 and q(9, x) := sum_{m=0..10} A055870(10, m)*x^m = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..10} A055870(10, m)*a(n-m) = 0, n >= 10; inputs: a(n), n=0..9. a(n) = 55*a(n-1) + 1870*a(n-2) - 19635*a(n-3) - 85085*a(n-4) + 136136*a(n-5) + 85085*a(n-6) - 19635*a(n-7) - 1870*a(n-8) + 55*a(n-9) + a(n-10).
PROG
(Magma) [Fibonacci(n)^9: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011
(PARI) a(n) = fibonacci(n)^9; \\ Michel Marcus, Sep 06 2017
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved