[go: up one dir, main page]

login
A056553
Smallest 4th-power divisible by n divided by largest 4th-power which divides n.
4
1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 1, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 16, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
OFFSET
1,2
FORMULA
a(n) = A053167(n)/A008835(n) = A056556(n)*A053165(n) = A056554(n)^4.
From Amiram Eldar, Oct 27 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 4, and a(p^e) = p^4 otherwise.
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(20)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.123026157003... . (End)
EXAMPLE
a(64) = 16 because smallest 4th power divisible by 64 is 256 and largest 4th power which divides 64 is 16 and 256/16 = 16.
MATHEMATICA
f[p_, e_] := p^If[Divisible[e, 4], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^4; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%4, f[i, 1], 1))^4; } \\ Amiram Eldar, Oct 27 2022
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Jun 25 2000
STATUS
approved