[go: up one dir, main page]

login
A056456
Number of palindromes of length n using exactly five different symbols.
8
0, 0, 0, 0, 0, 0, 0, 0, 120, 120, 1800, 1800, 16800, 16800, 126000, 126000, 834120, 834120, 5103000, 5103000, 29607600, 29607600, 165528000, 165528000, 901020120, 901020120, 4809004200, 4809004200, 25292030400
OFFSET
1,9
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-71,71,154,-154,-120,120).
FORMULA
a(n) = 5! * Stirling2( [(n+1)/2], 5).
G.f.: -120*x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - Colin Barker, Sep 03 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=5 is the number of symbols. - Robert A. Russell, Sep 25 2018
MATHEMATICA
k=5; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0, 0, 0, 0, 0, 0, 0, 120}, 30] (* Vincenzo Librandi, Sep 29 2018 *)
PROG
(PARI) a(n) = 5!*stirling((n+1)\2, 5, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
Sequence in context: A332560 A334571 A056466 * A239535 A085218 A296884
KEYWORD
nonn,easy
STATUS
approved