OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(8-7*x)/(1-x)^3.
a(n-15) = binomial(n,2) - 7*n. - Zerinvary Lajos, Nov 26 2006
a(n) = A126890(n,7) for n>6. - Reinhard Zumkeller, Dec 30 2006
Let f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,8), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1)+ n + 7 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 1195757/2702700 via A132760. - R. J. Mathar, Jul 14 2012
a(n) = 8*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(16 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 52279/540540. - Amiram Eldar, Jan 10 2021
MAPLE
a:=n->n*(n+15)/2: seq(a(n), n=0..60);
MATHEMATICA
Table[n*(n + 15)/2, {n, 0, 100}] (* Paolo Xausa, Aug 02 2024 *)
PROG
(PARI) a(n)=n*(n+15)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n*(n+15)/2: n in [0..60]]; // G. C. Greubel, Jan 18 2020
(Sage) [n*(n+15)/2 for n in (0..60)] # G. C. Greubel, Jan 18 2020
(GAP) List([0..60], n-> n*(n+15)/2 ); # G. C. Greubel, Jan 18 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 06 2000
EXTENSIONS
More terms from James A. Sellers, Jul 07 2000
STATUS
approved