[go: up one dir, main page]

login
A055996
a(n) = 81*10^(n-2), a(0)=1, a(1)=8.
2
1, 8, 81, 810, 8100, 81000, 810000, 8100000, 81000000, 810000000, 8100000000, 81000000000, 810000000000, 8100000000000, 81000000000000, 810000000000000, 8100000000000000, 81000000000000000, 810000000000000000
OFFSET
0,2
COMMENTS
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 9*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n)=10a(n-1)+[(-1)^n]*C(2, 2-n). G.f.(x)=(1-x)^2/(1-10x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*8^k. - Philippe Deléham, Dec 05 2011
MATHEMATICA
Join[{1, 8}, NestList[10#&, 81, 20]] (* Harvey P. Dale, Nov 20 2015 *)
CROSSREFS
Second differences of 10^n (A011557). Cf. A052268.
Sequence in context: A264185 A302065 A098308 * A324016 A068617 A207994
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jun 04 2000
STATUS
approved