[go: up one dir, main page]

login
A055980
a(n) = floor(Sum_{i=1..n} 1/i).
10
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,4
COMMENTS
If we choose at random (uniformly) a permutation in the symmetric group S_n then a(n) is the expected number of cycles (rounded down) in the cycle decomposition of the permutation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 17 2001
a(n) = A214075(n,n-1) for n > 0. - Reinhard Zumkeller, Jul 03 2012
LINKS
L. D. Kudryavtsev, Harmonic series, The Encyclopedia of Mathematics.
Eric Weisstein's World of Mathematics, High-Water Mark
FORMULA
a(n) ~ log(n) - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
a(n) = floor[A001008(n)/A002805(n)]. - Lekraj Beedassy, Sep 17 2006
MATHEMATICA
Floor[HarmonicNumber[Range[110]]] (* Harvey P. Dale, May 22 2021 *)
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a055980 = floor . sum . map (1 %) . enumFromTo 1
a055980_list = map floor $ scanl1 (+) $ map (1 %) [1..]
-- Reinhard Zumkeller, Jul 03 2012
CROSSREFS
Cf. A002387, A004080 (indices of records).
Sequence in context: A191517 A303370 A082528 * A076080 A134914 A372406
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 20 2000
STATUS
approved