OFFSET
1,1
COMMENTS
Also primes of the form (n^2 + 7)/8. - Ray Chandler, Oct 08 2005
q=2 and q=5 are the only primes values such that q+1 is a triangular number because 8q+9 is a square for 2 and 5 only. - Benoit Cloitre, Apr 05 2002
It is conjectured that this sequence is infinite. - Daniel Forgues, Apr 21 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
MATHEMATICA
Select[Table[(n^2 + 7)/8, {n, 400}], PrimeQ] (* Ray Chandler, Oct 08 2005 *)
Select[Accumulate[Range[400]]+1, PrimeQ] (* Harvey P. Dale, May 14 2022 *)
PROG
(PARI) forprime(p=2, 10^5, if ( issquare(8*p-7), print1(p, ", "))) \\ Joerg Arndt, Jul 14 2012
(PARI) list(lim)=my(v=List(), p); forstep(s=3, sqrtint(lim\1*8-7), 2, if(isprime(p=(s^2+7)/8), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, May 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 27 2000
STATUS
approved