[go: up one dir, main page]

login
A055469
Primes of the form k(k+1)/2+1 (i.e., central polygonal numbers, or one more than triangular numbers).
20
2, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, 631, 821, 947, 991, 1129, 1327, 1597, 1831, 2017, 2081, 2347, 2557, 2851, 2927, 3571, 3917, 4561, 4657, 4951, 5051, 5779, 6217, 6329, 8647, 8779, 9181, 9871, 11027, 12721, 13367, 14029, 14197, 14879
OFFSET
1,1
COMMENTS
Also primes of the form (n^2 + 7)/8. - Ray Chandler, Oct 08 2005
q=2 and q=5 are the only primes values such that q+1 is a triangular number because 8q+9 is a square for 2 and 5 only. - Benoit Cloitre, Apr 05 2002
n such that A000010(n) = A000217(k). - Giovanni Teofilatto, Jan 29 2010
It is conjectured that this sequence is infinite. - Daniel Forgues, Apr 21 2015
LINKS
FORMULA
a(n) = A000124(A067186(n)) = (A110873(n) + 7)/8. - Ray Chandler, Oct 08 2005
MATHEMATICA
Select[Table[(n^2 + 7)/8, {n, 400}], PrimeQ] (* Ray Chandler, Oct 08 2005 *)
Select[Accumulate[Range[400]]+1, PrimeQ] (* Harvey P. Dale, May 14 2022 *)
PROG
(PARI) forprime(p=2, 10^5, if ( issquare(8*p-7), print1(p, ", "))) \\ Joerg Arndt, Jul 14 2012
(PARI) list(lim)=my(v=List(), p); forstep(s=3, sqrtint(lim\1*8-7), 2, if(isprime(p=(s^2+7)/8), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, May 05 2020
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 27 2000
STATUS
approved