[go: up one dir, main page]

login
Number of points in Z^5 of norm <= n.
7

%I #29 Jun 24 2024 10:51:16

%S 1,11,221,1343,5913,16875,42205,89527,176377,313259,532509,853399,

%T 1322921,1961211,2846933,4005143,5554265,7491355,9977557,13065527,

%U 16907817,21524019,27179909,33921671,42036401,51452803,62664773

%N Number of points in Z^5 of norm <= n.

%H Chai Wah Wu, <a href="/A055411/b055411.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..500 from Andrew Howroyd)

%F a(n) = A122510(5,n^2). - _R. J. Mathar_, Apr 21 2010

%F a(n) = [x^(n^2)] theta_3(x)^5/(1 - x), where theta_3() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 14 2018

%t t[d_, n_] := t[d, n] = t[d, n - 1] + SquaresR[d, n]; t[d_, 0] = 1;

%t a[n_] := t[5, n^2];

%t a /@ Range[0, 100] (* _Jean-François Alcover_, Sep 27 2019, after _R. J. Mathar_ *)

%o (Python)

%o # uses Python code for A046895

%o def A055411(n): return A046895(m:=n**2)+(sum(A046895(m-k**2) for k in range(1,n+1))<<1) # _Chai Wah Wu_, Jun 23 2024

%Y Column k=5 of A302997.

%Y Cf. A122510.

%K nonn

%O 0,2

%A _David W. Wilson_