%I #41 Oct 27 2021 15:00:40
%S 1,1,0,1,1,0,1,4,2,0,1,11,18,6,0,1,26,98,96,24,0,1,57,424,874,600,120,
%T 0,1,120,1614,6040,8244,4320,720,0,1,247,5682,35458,83500,83628,35280,
%U 5040,0,1,502,19022,187288,701164,1169768,915984,322560,40320,0,1
%N Triangle of increasing mobiles (circular rooted trees) with n nodes and k leaves.
%C In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
%C Also related to the solution of the equation df/dt=f e^f (see the Maple code). - _F. Chapoton_, Jul 16 2004
%H Andrew Howroyd, <a href="/A055356/b055356.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)
%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012. - _N. J. A. Sloane_, Aug 21 2012
%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>
%F Let p(n,x) be the polynomial with coefficients equal to the n-th row of the triangle in ascending powers of x, e.g., p(4,x) = 1+4*x+2*x^2; then p(n+1,x) = (1+(n-1)*x)*p(n,x) + x*p'(n,x). - _Ben Whitmore_, May 12 2021
%F Recurrence: T(n,k) = (n-2) * T(n-1,k-1) + k * T(n-1,k) for n >= 1, 1 <= k <= n with T(1,1) = 1 and T(n,k) = 0 for n < 1, k < 1 or k > n. - _Georg Fischer_, Oct 27 2021
%e Triangle begins
%e 1;
%e 1, 0;
%e 1, 1, 0;
%e 1, 4, 2, 0;
%e 1, 11, 18, 6, 0;
%e 1, 26, 98, 96, 24, 0;
%e 1, 57, 424, 874, 600, 120, 0;
%e ...
%p P[1]:=1;for n from 1 to 8 do P[n+1]:=simplify((1+n*x)*P[n]+x*diff(P[n],x)) end; # _F. Chapoton_, Jul 16 2004
%t P[1][_] = 1;
%t P[n_][x_] := P[n][x] = (1 + (n-1) x) P[n-1][x] + x P[n-1]'[x] // Expand;
%t row[1] = {1};
%t row[n_] := Append[CoefficientList[P[n-1][x], x], 0];
%t Array[row, 10] // Flatten (* _Jean-François Alcover_, Nov 17 2018, after _F. Chapoton_ *)
%o (PARI)
%o A(n)={my(v=vector(n)); v[1]=y; for(n=2, #v, v[n]=v[n-1] + sum(k=1, n-2, binomial(n-2, k)*v[k]*v[n-k])); vector(#v, i, Vecrev(v[i]/y, i))}
%o { my(T=A(10)); for(i=1, #T, print(T[i])) } \\ _Andrew Howroyd_, Sep 23 2018
%Y Row sums give A029768 (p(n,1)).
%Y Alternating row sums give A089963 (p(n+1,-1)).
%Y Columns 2..8 are A000295, A055357, A055358, A055359, A055360, A055361, A055362.
%Y Cf. A055340, A055349, A055363.
%K nonn,tabl
%O 1,8
%A _Christian G. Bower_, May 15 2000