[go: up one dir, main page]

login
A054411
Numbers k such that Sum_{j} p_j = Sum_{j} e_j where Product_{j} p_j^(e_j) is the prime factorization of k.
19
1, 4, 27, 48, 72, 108, 162, 320, 800, 1792, 2000, 3125, 3840, 5000, 5760, 6272, 8640, 9600, 10935, 12500, 12960, 14400, 18225, 19440, 21504, 21600, 21952, 24000, 29160, 30375, 31250, 32256, 32400, 36000, 43740, 45056, 48384, 48600, 50625, 54000, 60000, 65610
OFFSET
1,2
COMMENTS
Numbers for which the sum of distinct prime factors equals the sum of exponents in the prime factorization, A008472(n)=A001222(n). - Reinhard Zumkeller, Mar 08 2002
LINKS
Giuseppe Coppoletta and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 100 terms from G. Coppoletta)
EXAMPLE
320 is included because 320 = 2^6 * 5^1 and 2+5 = 6+1.
MATHEMATICA
f[n_]:=Plus@@First/@FactorInteger[n]==Plus@@Last/@FactorInteger[n]; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 0, 3*8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
max = 10^12; Sort@Reap[Sow@1; Do[p = Select[IntegerPartitions[se, All, Prime@ Range@ PrimePi@ se], Sort[#] == Union[#] &]; Do[ np = Length[f]; va = IntegerPartitions[se, {np}, Range[se]]; Do[pe = Permutations[v]; Do[z = Times @@ (f^e); If[z <= max, Sow@z], {e, pe}], {v, va}], {f, p}], {se, 2, Log2[max]}]][[2, 1]] (* Giovanni Resta, May 07 2016 *)
PROG
(PARI) for(n=1, 10^6, if(bigomega(n)==sumdiv(n, d, isprime(d)*d), print1(n, ", ")))
(PARI) is(n)=my(f=factor(n)); sum(i=1, #f~, f[i, 1]-f[i, 2])==0 \\ Charles R Greathouse IV, Sep 08 2016
(Sage) def d(n):
v=factor(n)[:]; L=len(v); s0=sum(v[j][0] for j in range(L)); s1=sum(v[j][1] for j in range(L))
return s0-s1
[k for k in (1..100000) if d(k)==0] # Giuseppe Coppoletta, May 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, May 09 2000
STATUS
approved