OFFSET
0,4
LINKS
Reinhard Zumkeller, Antidiagonals n=0..125 of square array, flattened
FORMULA
From Peter Munn, Dec 10 2019: (Start)
A(m,0) = A(0,m) = m.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
A(m,m) = 4*m.
A(2*n, 2*k) = 2*A(n,k).
(End)
EXAMPLE
T(3,1)=6 because (0*2 + 1*sqrt(2) + 1*1) + (0*2 + 0*sqrt(2) + 1*1) = (1*2 + 1*sqrt(2) + 0*1) (i.e., base sqrt(2) addition).
PROG
(Haskell)
import Data.Bits (xor, (.&.), shift)
a054240 :: Integer -> Integer -> Integer
a054240 x 0 = x
a054240 x y = a054240 (x `xor` y) (shift (x .&. y) 2)
a054240_adiag n = map (\k -> a054240 (n - k) k) [0..n]
a054240_square = map a054240_adiag [0..]
-- Reinhard Zumkeller, Dec 03 2011
CROSSREFS
AUTHOR
Marc LeBrun, Feb 07 2000
STATUS
approved