OFFSET
1,1
COMMENTS
a(14) > 2^32 and a(15) > 2^32. - Jud McCranie
LINKS
R. Chapman, Dirichlet's theorem: a real variable approach, 2008.
B. Green & T. Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 2004-2007.
EXAMPLE
For n=3, product of first 3 primes is 30. The first arithmetic progression of 3 primes with difference 30 starts at 7 (7, 37, 67), so a(3)=7.
MATHEMATICA
(* This program is not convenient beyond 10 terms *) r[p1_, n_] := Reduce[p[1] = p1; Equal @@ Append[Table[p[k + 1] - p[k], {k, 1, n - 1}], Product[Prime[k], {k, 1, n}]], p[2], Primes]; a[n_] := a[n] = Catch[For[k = 1, k <= 10^5, k++, If[r[p1 = Prime[k], n] =!= False, Throw[p1]]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Dec 27 2012 *)
CROSSREFS
KEYWORD
hard,nonn,nice
AUTHOR
G. L. Honaker, Jr., Feb 18 2000
EXTENSIONS
Last 3 terms from Jud McCranie, Feb 28 2000
a(14)-a(15) from Donovan Johnson, Oct 20 2009
STATUS
approved