[go: up one dir, main page]

login
A053647
First term of first sequence of n primes in arithmetic progression with a common difference equal to the product of first n primes.
0
2, 5, 7, 13, 37, 73, 7937, 7703, 272809, 640943, 5378959, 116137159, 3708797237, 114649314209, 158317270283
OFFSET
1,1
COMMENTS
a(14) > 2^32 and a(15) > 2^32. - Jud McCranie
EXAMPLE
For n=3, product of first 3 primes is 30. The first arithmetic progression of 3 primes with difference 30 starts at 7 (7, 37, 67), so a(3)=7.
MATHEMATICA
(* This program is not convenient beyond 10 terms *) r[p1_, n_] := Reduce[p[1] = p1; Equal @@ Append[Table[p[k + 1] - p[k], {k, 1, n - 1}], Product[Prime[k], {k, 1, n}]], p[2], Primes]; a[n_] := a[n] = Catch[For[k = 1, k <= 10^5, k++, If[r[p1 = Prime[k], n] =!= False, Throw[p1]]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Dec 27 2012 *)
CROSSREFS
Sequence in context: A177997 A238776 A141112 * A023242 A164570 A348671
KEYWORD
hard,nonn,nice
AUTHOR
G. L. Honaker, Jr., Feb 18 2000
EXTENSIONS
Last 3 terms from Jud McCranie, Feb 28 2000
a(14)-a(15) from Donovan Johnson, Oct 20 2009
STATUS
approved