[go: up one dir, main page]

login
A053308
Partial sums of A053296.
6
1, 9, 46, 175, 551, 1518, 3785, 8735, 18955, 39130, 77533, 148487, 276408, 502415, 895103, 1568062, 2708322, 4622488, 7811510, 13091798, 21791338, 36067176, 59419294, 97522270, 159571139, 260459265, 424302452, 690141333
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-35,76,-98,70,-14,-20,19,-7,1).
FORMULA
a(n) = Sum_{i=0..floor(n/2)} C(n+8-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+7,7); n >= 0; a(-1)=0.
MATHEMATICA
Table[Sum[Binomial[n+8-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
PROG
(PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+8-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
(Magma) [(&+[Binomial(n+8-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Mar 06 2000
STATUS
approved