[go: up one dir, main page]

login
A053260
Coefficients of the '5th-order' mock theta function psi_0(q).
13
0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 8, 9, 10, 9, 11, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 21, 22, 22, 24, 25, 25, 27, 28, 29, 30, 32, 32, 34, 36, 36, 39, 40, 41, 44, 45, 46
OFFSET
0,14
COMMENTS
Number of partitions of n such that each part occurs at most twice, the largest part is unique and if k occurs as a part then all smaller positive integers occur.
Strongly unimodal compositions with first part 1 and each up-step is by at most 1 (left-smoothness); with this interpretation one should set a(0)=1; see example. Replacing "strongly" by "weakly" in the condition gives A001524. Dropping the requirement of unimodality gives A005169. [Joerg Arndt, Dec 09 2012]
REFERENCES
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 21, 22.
LINKS
George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.
George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
FORMULA
G.f.: psi_0(q) = Sum_{n>=0} q^((n+1)*(n+2)/2) * (1+q)*(1+q^2)*...*(1+q^n).
a(n) ~ exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
EXAMPLE
From Joerg Arndt, Dec 09 2012: (Start)
The a(42)=8 strongly unimodal left-smooth compositions are
[ #] composition
[ 1] [ 1 2 3 4 5 6 7 5 4 3 2 ]
[ 2] [ 1 2 3 4 5 6 7 6 4 3 1 ]
[ 3] [ 1 2 3 4 5 6 7 6 5 2 1 ]
[ 4] [ 1 2 3 4 5 6 7 6 5 3 ]
[ 5] [ 1 2 3 4 5 6 7 8 3 2 1 ]
[ 6] [ 1 2 3 4 5 6 7 8 4 2 ]
[ 7] [ 1 2 3 4 5 6 7 8 5 1 ]
[ 8] [ 1 2 3 4 5 6 7 8 6 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i-1))))
end:
a:= proc(n) local h, k, m, r;
m, r:= floor((sqrt(n*8+1)-1)/2), 0;
for k from m by -1 do h:= k*(k+1);
if h<=n then break fi;
r:= r+b(n-h/2, k-1)
od: r
end:
seq(a(n), n=0..100); # Alois P. Heinz, Aug 02 2013
MATHEMATICA
Series[Sum[q^((n+1)(n+2)/2) Product[1+q^k, {k, 1, n}], {n, 0, 12}], {q, 0, 100}]
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1] ] ]]; a[n_] := Module[{h, k, m, r}, {m, r} = {Floor[(Sqrt[n*8+1]-1)/2], 0}; For[k = m, True, k--, h = k*(k+1); If[h <= n, Break[]]; r = r + b[n-h/2, k-1]]; r]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
gf = sum(n=1, N, x^(n*(n+1)/2) * prod(k=1, n-1, 1+x^k) ) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 21 2013 */
CROSSREFS
Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053259, A053261, A053262, A053263, A053264, A053265, A053266, A053267.
Sequence in context: A024890 A254123 A007895 * A267135 A140223 A308694
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved