[go: up one dir, main page]

login
A053114
a(n) = ((8*n+9)(!^8))/9, related to A045755 ((8*n+1)(!^8) octo- or 8-factorials).
2
1, 17, 425, 14025, 575025, 28176225, 1606044825, 104392913625, 7620682694625, 617275298264625, 54937501545551625, 5328937649918507625, 559538453241443300625, 63227845216283092970625
OFFSET
0,2
COMMENTS
Row m=9 of the array A(9; m,n) := ((8*n+m)(!^8))/m(!^8), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((8*n+9)(!^8))/9(!^8) = A045755(n+2)/9.
E.g.f.: 1/(1-8*x)^(17/8).
G.f.: 1/(1-17x/(1-8x/(1-25x/(1-16x/(1-33x/(1-24x/(1-41x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 16, 5!, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 8*x)^(17/8), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-8*x)^(17/8))) \\ G. C. Greubel, Aug 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(17/8))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. A051189, A045755, A034908-12, A034975-6 (rows m=0..8).
Sequence in context: A134940 A196676 A027404 * A221443 A222648 A167474
KEYWORD
easy,nonn
STATUS
approved