[go: up one dir, main page]

login
A052985
Expansion of ( 1-x ) / ( 1-3*x+x^2-x^3+x^4 ).
0
1, 2, 5, 14, 38, 103, 280, 761, 2068, 5620, 15273, 41506, 112797, 306538, 833050, 2263903, 6152400, 16719809, 45437880, 123482328, 335576513, 911965282, 2478363781, 6735220246, 18303685726, 49742235431, 135179877032
OFFSET
0,2
FORMULA
G.f.: -(-1+x)/(1-3*x-x^3+x^4+x^2)
Recurrence: {a(0)=1, a(1)=2, a(2)=5, a(3)=14, a(n)-a(n+1)+a(n+2)-3*a(n+3)+a(n+4)=0}
Sum(-1/1099*(-270-11*_alpha+141*_alpha^3-104*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-_Z^3+_Z^4+_Z^2))
MAPLE
spec := [S, {S=Sequence(Union(Prod(Union(Prod(Z, Z), Sequence(Z)), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
CROSSREFS
Sequence in context: A172259 A292327 A084085 * A052945 A026288 A006574
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved