[go: up one dir, main page]

login
A052948
Expansion of g.f.: (1-2*x)/(1-3*x+2*x^3).
5
1, 1, 3, 7, 19, 51, 139, 379, 1035, 2827, 7723, 21099, 57643, 157483, 430251, 1175467, 3211435, 8773803, 23970475, 65488555, 178918059, 488813227, 1335462571, 3648551595, 9968028331, 27233159851, 74402376363, 203271072427, 555346897579, 1517235940011, 4145165675179
OFFSET
0,3
COMMENTS
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 3, s(n) = 3.
In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} sin(j*r*Pi/m)*sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k. - Herbert Kociemba, Jun 02 2004
LINKS
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Denis Chebikin and Richard Ehrenborg, The f-vector of the descent polytope, arXiv:0812.1249 [math.CO], 2008-2010; Disc. Comput. Geom., 45 (2011), 410-424.
Alina F. Y. Zhao, Bijective proofs for some results on the descent polytope, Australasian Journal of Combinatorics, Volume 65(1) (2016), Pages 45-52.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 1.
a(n) = Sum_{alpha=RootOf(1-3*z+2*z^3)} alpha^(-n)/3.
a(n) = (1 + (1+sqrt(3))^n + (1-sqrt(3))^n)/3. Binomial transform of A025192 (with interpolated zeros). - Paul Barry, Sep 16 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)^2 * (1 + 2*cos(Pi*k/6))^n. - Herbert Kociemba, Jun 02 2004
a(0)=1, a(1)=1, a(2)=3, a(n) = 3*a(n-1) - 2*a(n-3). - Harvey P. Dale, Aug 22 2012
a(n) = A077846(n) - 2*A077846(n-1). - R. J. Mathar, Feb 27 2019
E.g.f.: exp(x)*(1 + 2*cosh(sqrt(3)*x))/3. - Stefano Spezia, Mar 02 2024
MAPLE
spec := [S, {S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z), Z)), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq(coeff(series((1-2*x)/(1-3*x+2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 21 2019
MATHEMATICA
CoefficientList[Series[(1-2x)/(1-3x+2x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 0, -2}, {1, 1, 3}, 30] (* Harvey P. Dale, Aug 22 2012 *)
PROG
(Sage) from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1, 1, 2, 2, lambda n: -1); [next(it) for i in range(0, 29)] # Zerinvary Lajos, Jul 09 2008
(PARI) Vec((1-2*x)/(1-3*x+2*x^3)+O(x^30))
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-3*x+2*x^3) )); // G. C. Greubel, Oct 21 2019
(GAP) a:=[1, 1, 3];; for n in [4..30] do a[n]:=3*a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Oct 21 2019
CROSSREFS
Sequence in context: A341703 A078059 A018031 * A026325 A002426 A011769
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
Definition revised by N. J. A. Sloane, Feb 24 2011
STATUS
approved