[go: up one dir, main page]

login
A052895
E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).
8
1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
E.g.f.: (1/2)/(exp(x) - 1)*(1 - (5 - 4*exp(x))^(1/2)).
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*Catalan(k). - Vladimir Kruchinin, Sep 15 2010
a(n) ~ sqrt(10)*n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: 1/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
E.g.f.: C(exp(x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108. Cf. A006531.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 5, 3, 5, 1, 5, 3, 5, ...), with an apparent period 1, 5, 3, 5 of length 4 = phi(10) beginning at a(1). (End)
O.g.f.: 1 + Sum_{k>=1} A000108(k)*Product_{r=1..k} r*x/(1 - r*x). - Petros Hadjicostas, Jun 12 2020
MAPLE
spec := [S, {C=Set(Z, 1 <= card), S=Sequence(B), B=Prod(C, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f. from Vaclav Kotesovec, Sep 30 2013
STATUS
approved