[go: up one dir, main page]

login
A052639
E.g.f. (1-2x)/(1-2x-x^3).
0
1, 0, 0, 6, 48, 480, 6480, 100800, 1774080, 35199360, 776563200, 18840729600, 498640665600, 14297239756800, 441470866636800, 14605415016192000, 515412006100992000, 19325209343311872000, 767215648278503424000
OFFSET
0,4
FORMULA
E.g.f.: (-1+2*x)/(-1+2*x+x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=0, (-11*n-6-n^3-6*n^2)*a(n)+(-2*n-6)*a(n+2)+a(n+3)=0}
Sum(-1/59*(8+6*_alpha^2-25*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+2*_Z+_Z^3))*n!
a(n)= n!*A008998(n-3), n>2. - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Z, Sequence(Union(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Sequence in context: A244509 A105627 A051578 * A248744 A261900 A055861
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved