[go: up one dir, main page]

login
A052463
a(n) is the smallest nonnegative solution k to 24*k == 1 (mod 7^(2*n-2)).
6
0, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247
OFFSET
1,2
COMMENTS
Related to a Ramanujan congruence for the partition function P = A000041.
In other words, a(n) = k such that 24*k (mod 7^(2*n-2) ) == 1. - N. J. A. Sloane, Oct 08 2019
If b(n) = a(n) + 7^(2*n-2)*r, where r is a nonnegative integer, then there is an integer s >= 0 such that 24*b(n) = 24*a(n) + 24*7^(2*n-2)*r = 7^(2*n-2)*s + 1 + 24*7^(2*n-2)*r = 7^(2*n-2)*(24*r+s) + 1 == 1 (mod 7^(2*n-2)). Thus, we insist that a(n) is the smallest k >= 0 such that 24*k == 1 (mod 7^(2*n-2)). - Petros Hadjicostas, Oct 09 2019
LINKS
G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), 1(6) (2014), ISSN: 2349-8862.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
FORMULA
G.f.: x^2*(-49*x + 47)/((1 - x)*(1 - 49*x)).
a(n) = 49*a(n-1) - 2. - Vincenzo Librandi, Jul 01 2012
a(n) = 23*49^n/1176 + 1/24, n > 1. - R. J. Mathar, Oct 09 2019
MATHEMATICA
Table[PowerMod[24, -1, 7^(2b-2)], {b, 20}]
CoefficientList[Series[(-49x^2+47x)/((1-x)(1-49x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2012 *)
LinearRecurrence[{50, -49}, {0, 47, 2301}, 20] (* Harvey P. Dale, Aug 23 2021 *)
PROG
(Magma) I:=[0, 47]; [n le 2 select I[n] else 49*Self(n-1)-2: n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Name edited by Petros Hadjicostas, Oct 09 2019
STATUS
approved