OFFSET
1,3
LINKS
FORMULA
a(5*n + 1) = F(5*n + 1), a(5*n + 2) = F(5*n + 3), a(5*n + 3) = 0, a(5*n - 1) = a(5*n) = -F(5*n), where F = A000045 the Fibonacci sequence.
G.f.: x / (x^4 - 3*x^3 + 4*x^2 - 2*x + 1). - Michael Somos, Apr 25 2003
EXAMPLE
x + 2*x^2 - 5*x^4 - 5*x^5 + 8*x^6 + 21*x^7 - 55*x^9 - 55*x^10 + 89*x^11 + ...
MATHEMATICA
CoefficientList[Series[x/(x^4-3x^3+4x^2-2x+1), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, -4, 3, -1}, {0, 1, 2, 0}, 50] (* Harvey P. Dale, Aug 09 2020 *)
PROG
(PARI) {a(n) = local(x, y); x = fibonacci(n); y = fibonacci(n+1); [ -x, x, y, 0, -y][n%5 + 1]}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 07 1999
EXTENSIONS
Zero prepended by Harvey P. Dale, Aug 09 2020
STATUS
approved