[go: up one dir, main page]

login
A050934
Numbers k such that phi(k)*d(k) is a multiple of sigma(k), where d(k) is the number of divisors of k.
1
1, 3, 14, 35, 42, 105, 209, 248, 297, 418, 594, 627, 744, 1045, 1254, 1485, 1736, 2926, 3135, 3339, 3596, 3689, 3956, 4064, 4158, 5208, 5396, 5890, 6461, 7315, 7668, 8370, 8636, 8680, 8778, 8932, 9875, 10013, 10395, 10788, 11067, 11687
OFFSET
1,2
COMMENTS
Equality holds for 1, 3, 14, 42 and no others < 4290000000.
LINKS
EXAMPLE
phi(35)*d(35) = 4*24, a multiple of sigma(35) = 48, so 35 is in the sequence.
MATHEMATICA
Select[Range[12000], Divisible[EulerPhi[#]DivisorSigma[0, #], DivisorSigma[ 1, #]]&] (* Harvey P. Dale, Jan 11 2019 *)
PROG
(PARI) is(n) = {my(f = factor(n)); !((eulerphi(f) * numdiv(f)) % sigma(f)); } \\ Amiram Eldar, Apr 04 2024
CROSSREFS
Cf. A000005 (d), A000010 (phi), A000203 (sigma).
Sequence in context: A076533 A081379 A081377 * A110427 A296294 A128916
KEYWORD
nonn
AUTHOR
Jud McCranie, Dec 30 1999
STATUS
approved