[go: up one dir, main page]

login
A050689
Composites whose sum of digits equals number of its prime factors, with multiplicity.
9
12, 30, 32, 40, 102, 220, 240, 500, 600, 1002, 1012, 1104, 1152, 1210, 1320, 1500, 2001, 2002, 2020, 2040, 2120, 2240, 2300, 3010, 3040, 3300, 4032, 4100, 4320, 5100, 5200, 6400, 7000, 7200, 10001, 10002, 10011, 10030, 10040, 10080, 10140, 10220, 10304, 10800
OFFSET
1,1
COMMENTS
The sequence is infinite because there are infinitely many primes whose sum of digits is odd (see related comment in A119450). Let p be one of them, and let k be its digital sum. Then p*10^((k-1)/2) is a term. For example, 41*10^2 is a term. - Metin Sariyar, May 30 2020
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 322 terms from Michael Turniansky)
EXAMPLE
2002 is a term since 2+0+0+2 = 4, and 2002 = 2*7*11*13 has 4 prime factors.
MATHEMATICA
Select[Range[10300], !PrimeQ[#]&&PrimeOmega[#]==Total[IntegerDigits[#]]&] (* Jayanta Basu, May 30 2013 *)
PROG
(APL (NARS200 dialect)) ⍸∊{(⍴π⍵)=+/(10⍴10)⊤⍵}¨⍳1E6 ⍝for the numbers through 1000000 Michael Turniansky Feb 13 2017
(PARI) isok(n) = sumdigits(n) == bigomega(n); \\ Michel Marcus, Feb 13 2017
(Python)
from sympy import factorint
def ok(n): return 1 < sum(map(int, str(n))) == sum(factorint(n).values())
print([k for k in range(11000) if ok(k)]) # Michael S. Branicky, Dec 30 2021
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Aug 15 1999
STATUS
approved