[go: up one dir, main page]

login
A050476
a(n) = C(n)*(6n+1) where C(n)=Catalan numbers (A000108).
3
1, 7, 26, 95, 350, 1302, 4884, 18447, 70070, 267410, 1024556, 3938662, 15184876, 58689100, 227327400, 882230895, 3429693990, 13353413370, 52062618300, 203235266850, 794258570820, 3107215911540, 12167180964120, 47685286297350, 187036101361980, 734153906619252, 2883674432327864, 11333968799308652
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
FORMULA
5*(n+1)*a(n) + 2*(-14*n-1)*a(n-1) + 16*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 04 2015
G.f.: (5 - 8*x - 5*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
MATHEMATICA
Table[CatalanNumber[n](6n+1), {n, 0, 20}] (* Harvey P. Dale, Nov 05 2011 *)
PROG
(Magma) [Catalan(n)*(6*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); (Coefficients(R!( (5-8*x-5*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x)))))// Marius A. Burtea, Jan 05 2020
CROSSREFS
Column k=6 of A330965.
Sequence in context: A279761 A245750 A268776 * A026617 A240261 A232605
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Dec 24 1999
STATUS
approved