OFFSET
1,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: 1/(2-zeta(s-1)).
a(n) = n*Sum_{d divides n, d<n} a(d)/d, n>1, a(1)=1. - Vladeta Jovovic, Feb 09 2002
Sum_{k=1..n} a(k) ~ -n^(1+r) / ((1+r)*Zeta'(r)), where r = A107311 = 1.728647238998183618135103010297... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Feb 02 2019
G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 3*A(x^3) + 4*A(x^4) + ... - Ilya Gutkovskiy, May 10 2019
For n > 0, a(n) = n * A074206(n). - Vaclav Kotesovec, Mar 18 2021
MATHEMATICA
a[1]=1; a[n_]:=a[n]=n*Sum[If[d==n, 0, a[d]/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 02 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved