[go: up one dir, main page]

login
A048852
Difference between b^2 (in c^2=a^2+b^2) and product of successive prime pairs.
2
0, 3, 10, 14, 44, 26, 68, 38, 92, 174, 62, 222, 164, 86, 188, 318, 354, 122, 402, 284, 146, 474, 332, 534, 776, 404, 206, 428, 218, 452, 1778, 524, 822, 278, 1490, 302, 942, 978, 668, 1038, 1074, 362, 1910, 386, 788, 398, 2532, 2676, 908, 458, 932, 1434, 482
OFFSET
0,2
LINKS
FORMULA
Find b^2 in Pythagorean formula c^2=a^2+b^2. Subtract product of successive prime pair at same a(n) beginning at 2*2.
For n>0, a(n) = A000040(n+1)^2 - A000040(n) * A000040(n+1). - Mamuka Jibladze, Mar 24 2017
EXAMPLE
a(3)=10. Product of 3rd prime pair 3*5=15 (after 2*2=4 and 2*3=6). b^2=25 (in c^2=a^2+b^2) where c^2=34 and a^2=9. Then 25-15=10.
MATHEMATICA
With[{P=Prime}, Table[If[n==0, 0, P[n+1]*(P[n+1]-P[n])], {n, 0, 60}]] (* G. C. Greubel, Feb 22 2024 *)
PROG
(Magma) [0] cat [NthPrime(n+1)*(NthPrime(n+1)-NthPrime(n)): n in [1..60]]; // G. C. Greubel, Feb 22 2024
(SageMath) p=nth_prime; [0]+[p(n+1)*(p(n+1)-p(n)) for n in range(1, 61)] # G. C. Greubel, Feb 22 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved