OFFSET
1,3
COMMENTS
a(n) = cumulative sum of number of new penny-penny contacts when putting pennies on a table following a spiral pattern. This is the maximum possible number of contacts.
a(n) is also the maximum number of times the minimum distance can occur among n points in the plane [Harborth].
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10000
K. Bezdek, M. A. Khan, Contact numbers for sphere packings, arXiv:1601.00145 [math.MG], 2016, Theorem 3.1.
Peter Brass, The maximum number of second smallest distances in finite planar sets, Discrete & Computational Geometry 7.1 (1992): 371-379.
R. W. Grosse-Kunstleve, Penny Spiral Sequence
H. Harborth, Solution to problem 644A, Elemente der Mathematik (EMS Publishing House) 29, 14-15.
MathOverflow, Maximal number of edges and triangular cells for n points in a triangular lattice, August 2011.
FORMULA
a(n) = floor(3*n-sqrt(12*n-3)).
MATHEMATICA
Table[Floor[3n-Sqrt[12n-3]], {n, 70}] (* Harvey P. Dale, Dec 25 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 01 2017
STATUS
approved