[go: up one dir, main page]

login
A047765
Number of dissectable polyhedra with n tetrahedral cells and symmetry of type P.
9
0, 0, 0, 1, 0, 2, 0, 2, 0, 7, 0, 12, 0, 29, 0, 55, 0, 143, 0, 271, 0, 728, 0, 1428, 0, 3873, 0, 7752, 0, 21318, 0, 43256, 0, 120175, 0, 246675, 0, 690678, 0, 1430715, 0, 4032015, 0, 8414610, 0, 23841480, 0, 50067108, 0, 142498637, 0, 300830572
OFFSET
1,6
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type P achiral symmetry and n tetrahedral cells. The center of symmetry is the altitude of a tetrahedral face (21); the order of the symmetry group is 4. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024
LINKS
FORMULA
If n=2m then A047749(m) - A047764(n), otherwise 0.
G.f.: G(z^4) + z^2*G(z^4)^2 - z^2*G(z^12) - z^8*G(z^12)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
MATHEMATICA
Table[If[OddQ[n], 0, If[OddQ[n/2], 2Binomial[(3n-2)/4, (n-2)/4], Binomial[3n/4, n/4]]/(n/2+1)-Switch[Mod[n, 12], 2, 6Binomial[(n-2)/4, (n-2)/12], 8, 12Binomial[(n-4)/4, (n-2)/6], _, 0]/(n+4)], {n, 52}] (* Robert A. Russell, Mar 22 2024 *)
CROSSREFS
Cf. A047767.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047764 (type Q).
Sequence in context: A066285 A327873 A136665 * A068463 A099554 A319697
KEYWORD
nonn
STATUS
approved