[go: up one dir, main page]

login
A047713
Euler-Jacobi pseudoprimes: 2^((n-1)/2) == (2 / n) mod n, where (2 / n) is a Jacobi symbol.
21
561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653
OFFSET
1,1
COMMENTS
Odd composite numbers n such that 2^((n-1)/2) == (-1)^((n^2-1)/8) mod n. - Thomas Ordowski, Dec 21 2013
Most terms are congruent to 1 mod 8 (cf. A006971). Among the first 1000 terms, the number of terms congruent to 1, 3, 5 and 7 mod 8 are 764, 47, 125 and 64, respectively. - Jianing Song, Sep 05 2018
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A12.
H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the subsequence A006971).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
Eric Weisstein's World of Mathematics, Pseudoprime.
MATHEMATICA
Select[ Range[ 3, 105000, 2 ], Mod[ 2^((# - 1)/2) - JacobiSymbol[ 2, # ], # ] == 0 && ! PrimeQ[ # ] & ]
PROG
(PARI) is(n)=n%2 && Mod(2, n)^(n\2)==kronecker(2, n) && !isprime(n) \\ Charles R Greathouse IV, Dec 20 2013
CROSSREFS
Terms in this sequence satisfying certain congruence: A270698 (congruent to 1 mod 4), A270697 (congruent to 3 mod 4), A006971 (congruent to +-1 mod 8), A244628 (congruent to 3 mod 8), A244626 (congruent to 5 mod 8).
Sequence in context: A135721 A290486 A253595 * A006971 A270698 A218483
KEYWORD
nonn,nice
EXTENSIONS
Corrected by Eric W. Weisstein; more terms from David W. Wilson
STATUS
approved