[go: up one dir, main page]

login
A047702
Numbers that are the sum of 3 but no fewer positive cubes.
4
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433
OFFSET
1,1
REFERENCES
C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 352.
FORMULA
The numbers in {A003072 MINUS A000578} MINUS A003325. - R. J. Mathar, Apr 13 2008
EXAMPLE
344 is in A003072, but also in A003325; therefore it is not in here.
MAPLE
N:= 1000: # to get all terms <= N
G3:= series(add(x^(i^3), i=1..floor(N^(1/3)))^3, x, N+1):
G2:= series(add(x^(i^3), i=0..floor(N^(1/3)))^2, x, N+1):
select(t -> coeff(G3, x, t) > 0 and coeff(G2, x, t) = 0, [$1..N]); # Robert Israel, Dec 12 2016
MATHEMATICA
Select[Range[500], (pr = PowersRepresentations[#, 3, 3]; pr != {} && Count[pr, r_ /; (Times @@ r) == 0] == 0) &][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Arlin Anderson (starship1(AT)gmail.com)
STATUS
approved