[go: up one dir, main page]

login
A047299
Numbers that are congruent to {0, 1, 3, 4, 6} mod 7.
4
0, 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78
OFFSET
1,3
COMMENTS
Nonnegative m such that floor(k*m^2/7) = k*floor(m^2/7), where k = 2 or 3. [Bruno Berselli, Dec 03 2015]
For k > 1 (A007530(k+1) - A007530(k))/30 is a term in this sequence. - Hugo Pfoertner, May 29 2020
FORMULA
G.f.: x^2*(1+2*x+x^2+2*x^3+x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(n) = floor((7n-5)/5). - Lorenz H. Menke, Jr., Jun 19 2013
MATHEMATICA
a[n_]:=Floor[(7n-5)/5]; Table[a[i], {i, 1, 30}]; (* Lorenz H. Menke, Jr., Jun 19 2013 *)
PROG
(PARI) a(n)=(7*n-5)\5 \\ Charles R Greathouse IV, Jun 19 2013
(Magma) [Floor((7*n-5)/5): n in [1..100]]; // Zaki Khandaker, Jun 21 2015
CROSSREFS
Cf. A007530 (prime quadruples).
Sequence in context: A247987 A062975 A276218 * A186159 A184578 A022846
KEYWORD
nonn,easy
EXTENSIONS
Formula and programs adapted to offset 1 by Michel Marcus, May 30 2020
STATUS
approved