OFFSET
1,2
COMMENTS
Complement of A016861. - Reinhard Zumkeller, Oct 23 2006
LINKS
Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, Vol. 120, No. 5 (2013), pp. 409-429 [see p. 417].
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
A027445(a(n)) mod 10 = 0. - Reinhard Zumkeller, Oct 23 2006
a(n) = floor((5n-2)/4). - Gary Detlefs, Mar 06 2010
a(n) = floor((15n-5)/12). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(2+x+x^2+x^3)/((1+x)*(1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 14 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-7+(-1)^n+2*(-1)^((2*n+3+(-1)^n)/4))/8.
a(n) = A047207(n+1) - 1.
a(n+2) = n + 2 + A002265(n) for n>0.
a(n+3)-a(n+2) = A177704(n) for n>0.
a(1-n) = - A001068(n). (End)
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 - sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
MAPLE
seq(floor(5*n-2)/4), n=1..72); # Gary Detlefs, Mar 06 2010
seq(floor((15*n-5)/12), n=1..72); # Gary Detlefs, Mar 07 2010
MATHEMATICA
Flatten[Table[5*n + {0, 2, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *)
PROG
(PARI) a(n)=(5*n-2)\4 \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [Floor((5*n-2)/4) : n in [1..100]]; // Wesley Ivan Hurt, May 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Oct 23 2006
STATUS
approved