[go: up one dir, main page]

login
A047203
Numbers that are congruent to {0, 2, 3, 4} mod 5.
19
0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89
OFFSET
1,2
COMMENTS
Complement of A016861. - Reinhard Zumkeller, Oct 23 2006
LINKS
Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, Vol. 120, No. 5 (2013), pp. 409-429 [see p. 417].
FORMULA
A027445(a(n)) mod 10 = 0. - Reinhard Zumkeller, Oct 23 2006
a(n) = floor((5n-2)/4). - Gary Detlefs, Mar 06 2010
a(n) = floor((15n-5)/12). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(2+x+x^2+x^3)/((1+x)*(1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 14 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-7+(-1)^n+2*(-1)^((2*n+3+(-1)^n)/4))/8.
a(2n) = A047211(n), a(2n-1) = A047218(n).
a(n) = A047207(n+1) - 1.
a(n+2) = n + 2 + A002265(n) for n>0.
a(n+3)-a(n+2) = A177704(n) for n>0.
a(1-n) = - A001068(n). (End)
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 - sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
MAPLE
seq(floor(5*n-2)/4), n=1..72); # Gary Detlefs, Mar 06 2010
seq(floor((15*n-5)/12), n=1..72); # Gary Detlefs, Mar 07 2010
MATHEMATICA
Flatten[Table[5*n + {0, 2, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *)
PROG
(PARI) a(n)=(5*n-2)\4 \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [Floor((5*n-2)/4) : n in [1..100]]; // Wesley Ivan Hurt, May 14 2016
KEYWORD
nonn,easy
EXTENSIONS
More terms from Reinhard Zumkeller, Oct 23 2006
STATUS
approved