%I #23 Mar 02 2019 02:36:24
%S 691,3617,43867,283,617,131,593,103,2294797,657931,9349,362903,1721,
%T 1001259881,37,683,305065927,151628697551,26315271553053477373,
%U 154210205991661,137616929,1897170067619,1520097643918070802691,59
%N Prime factors of |numerator(B(2n))| which are >= 2n+3.
%C See A189683 for pairs (p,2n) for the primes p in this sequence.
%H Robert G. Wilson v, <a href="/A046753/b046753.txt">Table of n, a(n) for n = 1..154</a> (first 66 terms from T. D. Noe)
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/"> WIFC (World Integer Factorization Center)</a>
%t Flatten[Table[Select[First /@ FactorInteger[Abs[Numerator[BernoulliB[n]]]], # >= n+3 &], {n, 2, 70, 2}]] (* _T. D. Noe_, Apr 25 2011 *)
%o (Macsyma) for n do for p in map('first,factor_number(abs(num(bern(2*n))))) do if p>=2*n+3 then (?prin1(p),?prin1('?\-));
%Y Cf. A000367, A000928, A189683, A189684, A189685.
%K nonn
%O 1,1
%A _Bill Gosper_
%E Definition modified by _Jonathan Sondow_, Apr 27 2011