[go: up one dir, main page]

login
A046233
Numbers whose cube is palindromic in base 5.
5
0, 1, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
OFFSET
1,3
COMMENTS
Note that '626' is itself palindromic.
Contains all A034474(n), n>=1, as a subset because (5^n+1)^3=5^(3n)+3*5^(2n)+3*5^n+1 is a symmetric string 100..00300..00300..001 in base 5. [R. J. Mathar, Jul 31 2008]
LINKS
Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
PROG
(PARI) isok(k) = my(d=digits(k^3, 5)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
(Python)
from itertools import count, islice
from sympy.ntheory import is_palindromic as ispal
def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 5))
print(list(islice(agen(), 10))) # Michael S. Branicky, Aug 02 2022
CROSSREFS
Sequence in context: A233075 A307331 A298625 * A140231 A339685 A364744
KEYWORD
nonn,base,more
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
More terms from Megan Francis (mkf5011(AT)psu.edu), Nov 15 2005
STATUS
approved