[go: up one dir, main page]

login
A046209
Number of ternary Lyndon words whose digits sum to 0 mod 3; also number of trace 0 irreducible polynomials over GF(3).
12
1, 1, 2, 6, 16, 38, 104, 270, 726, 1960, 5368, 14736, 40880, 113828, 318848, 896670, 2532160, 7174050, 20390552, 58112088, 166037248, 475467916, 1364393896, 3922624800, 11297181456, 32588003000, 94143178098, 272342710380, 788854912240, 2287679084096, 6641649422408, 19302293185470
OFFSET
1,3
COMMENTS
Also number of ternary Lyndon words of trace 0 over GF(3).
FORMULA
a(n) = 1/(3*n) * sum(d divides n, gcd(d, 3)*mu(d)*3^(n/d) ).
a(n) = A053548(n) + A053560(n) + A053561(n). - R. J. Mathar, Oct 21 2021
EXAMPLE
a(4) = 6 = |{ 0012, 0021, 0111, 0102, 0222, 1122 }|.
MATHEMATICA
a[n_] := 1/(3n) DivisorSum[n, GCD[#, 3]*MoebiusMu[#]*3^(n/#)&]; Array[a, 32] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
PROG
(PARI) a(n) = 1/(3*n) * sumdiv(n, d, gcd(d, 3)*moebius(d)*3^(n/d) ); /* Joerg Arndt, Aug 17 2012 */
CROSSREFS
Cf. A046211.
Sequence in context: A265758 A265107 A217631 * A285885 A273348 A198951
KEYWORD
nonn
AUTHOR
Frank Ruskey, Dec 13 1999
STATUS
approved