OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer. A long edge is centered at a triple with two integer entries and the remaining entry is one half an odd integer. - Michael Somos, May 31 2012
LINKS
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
From Michael Somos, May 31 2012: (Start)
Expansion of x * phi(x) * psi(x^4)^2 = x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 8 sequence [ 2, -3, 2, 1, 2, -3, 2, -3, ...].
EXAMPLE
q + 2*q^2 + 4*q^5 + 4*q^6 + 5*q^9 + 4*q^10 + 4*q^13 + 8*q^14 + 8*q^17 + ...
MATHEMATICA
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* Michael Somos, May 31 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved