[go: up one dir, main page]

login
A045684
Number of 2n-bead balanced binary necklaces of fundamental period 2n which are inequivalent to their reverse, complement and reversed complement.
2
0, 0, 0, 0, 0, 8, 32, 168, 616, 2380, 8464, 30760, 109612, 394816, 1420616, 5149940, 18736128, 68553728, 251899620, 929814984, 3445425136, 12814382452, 47817520376, 178982546512, 671813585080, 2528191984496, 9536849432000
OFFSET
0,6
COMMENTS
The number of length 2n balanced binary Lyndon words is A022553(n) and the number which are equivalent to their reverse, complement and reversed complement are respectively A045680(n), A000048(n) and A000740(n). - Andrew Howroyd, Sep 29 2017
FORMULA
From Andrew Howroyd, Sep 28 2017: (Start)
Moebius transform of A045675.
a(n) = A022553(n) - A045680(n) - A000048(n) - A000740(n) + 2*A045683(n).
(End)
MATHEMATICA
a22553[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n)];
a45680[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#] Binomial[# - Mod[#, 2], Quotient[#, 2]] &]];
a48[n_] := If[n == 0, 1, Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)];
a740[n_] := Sum[MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}];
b[n_] := Module[{t = 0, r = n}, If[n == 0, 1, While[EvenQ[r], r = Quotient[r, 2]; t += 2^(r - 1)]]; t + 2^Quotient[r, 2]];
a45683[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#]*b[#] &]];
a[n_] := If[n == 0, 0, a22553[n] - a45680[n] - a48[n] - a740[n] + 2 a45683[n]];
a /@ Range[0, 100] (* Jean-François Alcover, Sep 23 2019 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved